If want a direct answer it would be the decrease in mice, but if you want to get technical the decrease in grain spills caused mice to leave so that would be the indirect cause
Answer:
The correct option is <em>B) ultraviolet region, especially below a wavelength of 320 nm.</em>
Explanation:
Ultraviolet light carries an enormous amount of energy in it. It is invisible to the human eye. When UV light with enormous energy and wavelength lesser than 320nm, hits the DNA, it causes changes in the structure of the DNA. Mostly, it affects the thymine nitrogenous base regions and forms pyrimidine dimers. The structure of the DNA changes on all the sites where dimers form and hence, they cannot be properly transcribed.
Explanation:
Make a standard, "dart" design paper airplane
Fold your paper into the basic dart paper plane. Fold carefully and make your folds as sharp as possible, such as by running a thumbnail or a ruler along each fold to crease it. Do not bend up the edge of the wings
Throw the plane at least four more times. Each time before you throw the plane, make sure it is still in good condition (that the folds and points are still sharp). When you toss it, place your toe on the line and try to launch the plane with a similar amount of force, including gripping it at the same spot.
Once you have a good idea of how far your plane typically flies, change the plane’s shape to increase how much drag it experiences. To do this, cut slits that are about one inch long right where either wing meets the middle ridge. Fold up the cut section on both wings so that each now has a one-inch-wide section at the end of the wing that is folded up, at about a 90-degree angle from the rest of the wing.
Make paper planes that are different sizes and compare how well they fly.
Try making paper planes out of different types of paper, such as printer paper, construction paper and newspaper. Use the same design for each.
Some people like to add paper clips to their paper planes to make them fly better. Try adding a paper clip (or multiple paper clips) to different parts of your paper plane (such as the front, back, middle or wings) and then flying it
I hope i helped
Gravity, wind, ballistic, water, and by animals.
Answer:
12 : 3 : 1
Explanation:
According to Mendel's principles, a dihybrid cross between two heterozygous summer squash parents (WwGg X WwGg) should yield offsprings, 12 with white, 3 with yellow and 1 with green color phenotype. The classic Mendelian phenotypic ratio for dihybrid cross is 9:3:3:1. In this case, genotypes W- G- and W- gg produce white color phenotype. This is because we have 12: 3: 1 phenotypic ratio in which the alleles of two different genes assort independently into gametes.
<em>Dihybrid cross for heterozygous summer squash:</em>
WG Wg wG wg
WG WWGG WWGg WwGG WwGg
Wg WWGg WWgg WwGg Wwgg
wG WwGG WwGg wwGG wwGg
wg WwGg Wwgg wwGg wwgg
Genotypes:
W-G- and W- gg = white = 12
ww G- = yellow = 3
ww gg = green = 1