1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
3 years ago
11

Simplify 8n + 3 - 4 + 4n show work pls

Mathematics
2 answers:
S_A_V [24]3 years ago
6 0

Answer:

11n

Step-by-step explanation:

8n + 3= 11n

11n-4=7n

+4n=11n

Zepler [3.9K]3 years ago
6 0

Answer:

1.Subtract the numbers:

8n+3-4+ 4n

8n-1+ 4n

2.Combine like terms

8n-1+4n

12n-1

solution

12n-1

Step-by-step explanation:

I hope this can help you!!

You might be interested in
Write an equivalent fractions for 7x+4x+3-1
Diano4ka-milaya [45]
11x + 2 is combining like terms
4 0
3 years ago
Read 2 more answers
If YV = 28 in, find the length of vyw
max2010maxim [7]

Answer:

I’m sorry I don’t know

Step-by-step explanation:

3 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20x%20%3D%20log_%7Ba%7D%28bc%29" id="TexFormula1" title="\rm \: x = log_{a}(
timama [110]

Use the change-of-basis identity,

\log_x(y) = \dfrac{\ln(y)}{\ln(x)}

to write

xyz = \log_a(bc) \log_b(ac) \log_c(ab) = \dfrac{\ln(bc) \ln(ac) \ln(ab)}{\ln(a) \ln(b) \ln(c)}

Use the product-to-sum identity,

\log_x(yz) = \log_x(y) + \log_x(z)

to write

xyz = \dfrac{(\ln(b) + \ln(c)) (\ln(a) + \ln(c)) (\ln(a) + \ln(b))}{\ln(a) \ln(b) \ln(c)}

Redistribute the factors on the left side as

xyz = \dfrac{\ln(b) + \ln(c)}{\ln(b)} \times \dfrac{\ln(a) + \ln(c)}{\ln(c)} \times \dfrac{\ln(a) + \ln(b)}{\ln(a)}

and simplify to

xyz = \left(1 + \dfrac{\ln(c)}{\ln(b)}\right) \left(1 + \dfrac{\ln(a)}{\ln(c)}\right) \left(1 + \dfrac{\ln(b)}{\ln(a)}\right)

Now expand the right side:

xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} \\\\ ~~~~~~~~~~~~+ \dfrac{\ln(c)\ln(a)}{\ln(b)\ln(c)} + \dfrac{\ln(c)\ln(b)}{\ln(b)\ln(a)} + \dfrac{\ln(a)\ln(b)}{\ln(c)\ln(a)} \\\\ ~~~~~~~~~~~~ + \dfrac{\ln(c)\ln(a)\ln(b)}{\ln(b)\ln(c)\ln(a)}

Simplify and rewrite using the logarithm properties mentioned earlier.

xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} + \dfrac{\ln(a)}{\ln(b)} + \dfrac{\ln(c)}{\ln(a)} + \dfrac{\ln(b)}{\ln(c)} + 1

xyz = 2 + \dfrac{\ln(c)+\ln(a)}{\ln(b)} + \dfrac{\ln(a)+\ln(b)}{\ln(c)} + \dfrac{\ln(b)+\ln(c)}{\ln(a)}

xyz = 2 + \dfrac{\ln(ac)}{\ln(b)} + \dfrac{\ln(ab)}{\ln(c)} + \dfrac{\ln(bc)}{\ln(a)}

xyz = 2 + \log_b(ac) + \log_c(ab) + \log_a(bc)

\implies \boxed{xyz = x + y + z + 2}

(C)

6 0
2 years ago
100 POINTS!!!!
Sveta_85 [38]
Hey there! Sorry no one is answering! Definitely B!!
6 0
3 years ago
What is the best approximation of the solution to the equations that these two lines represent?
Sunny_sXe [5.5K]
Number one would be 1.5 , 3 and number two would be 1.5 , 1
7 0
3 years ago
Read 2 more answers
Other questions:
  • max lost 23 pounds while on a diet. he now weighs 184 pounds. write and solve an equation to find his initial weigh w
    6·1 answer
  • What is -4 4/5 as a decimal
    15·1 answer
  • 7.935 x 10 to negative 5 power
    6·1 answer
  • Represent the interval where both functions are increasing on the number line provided.
    10·1 answer
  • Which constant term should be used to complete the square? <br> x^2-5x+__=7
    11·1 answer
  • Which graph shows a polynomial function of an even degree?
    15·1 answer
  • What is the sum of 6 4/5 and 6 4/5?<br> A. 12 4/5<br> B. 29/5<br> C. 0<br> D. -12 4/5
    10·2 answers
  • Help quick please<br><br><br><br><br> ________
    7·2 answers
  • If the factors of quadratic function g are (x − 7) and (x + 3), what are the zeros of function g?
    11·1 answer
  • Which statement is true? 5 6 8 27 을 ll &lt; - 3 8 4 8 6 6
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!