Answer:
The strongest gravitational attraction between the two objects will be experienced when the distance between the two objects is smallest.
Explanation:
According to Newton's law of universal gravitation, the force of attraction between two objects is proportional to the products of their masses and inversely proportional to the square of the distance of separation between the two objects. This attraction between objects is known as gravity and it applies to all objects in the universe.
From the law of universal gravitation, since their is an inverse square relationship between gravitational force and the distance of separation between two interacting objects, an increase in the distance of separation will result in weaker gravitational forces. For example, if the distance of separation between two objects is increased by a factor of 2, then the force of gravitational attraction is decreased by a factor of 4 (since 2² = 4). However, if the distance of separation between the two objects is decreased by a factor of two, i.e. is halved, then the force of gravitational attraction is increased by a factor of 4.
Thus, the strongest gravitational attraction between the two objects will be experienced when the distance between the two objects is smallest.
Outcome (dependent) variable-drinking energy drinks
Test (independent) variable- more aggressive
Ionic bond is a chemical bond formed by the complete transfer of electrons between two atoms. The atom that loses electrons gains a positive charge (cation) and that which accepts electrons gains a negative charge (anion). Now, electronegativity is a parameter that measures the tendency of an atom to accept electrons. In the context of ionic bonding, two elements which show a significant difference in their electronegativity values form ionic bonds.
In the given examples, the difference in electronegativity is greatest between K and Br i.e. 0.8 and 2.8 respectively with a difference of 2.0. This also makes sense since K and Br are on the extreme ends of the periodic table. Hence, potassium with a valence electron configuration of 4s1 will lose its s electron to Br (4s24p6) and form an ionic molecule K⁺Br⁻
Ans E) potassium and bromine
Answer:
B. It is important that people are not harmed for the sake of science.
Explanation:
Ethical principles stress the need to do good and cause no harm.A researcher is therefore required to;
- obtain an informed consent from the participants
- minimize or eliminate risk of harm to participants
- protect the anonymity and confidentiality of participants
- Apply no deceptive techniques
- allow the right to withdraw from the study by a participant