It’s fluorine it has a big jump from the 6th to 7th ionisation energy.
It’s electronic configuration is 1s2 2s2 2p5 as it has 9 electrons and 7 electrons in outermost shell.
Therefore it’s in group 7, as after the 7 electrons are removed, the 8th electron is removed from a quantum shell closer to the nucleus.
This results in greater ionisation energy due to stronger electrostatic forces of attraction between positively charge nuclei and electrons ( + shorter distance)
Answer:
The new volume of the balloon is 38.5 L
Explanation:
Step 1: Data given
Volume at the start = V1 = 35.0 L
Temperature at the start = T1 = 303 Kelvin
Volume by 3pm = TO BE DETERMINED
Temperature by 3pm = 333 Kelvin
<u>Step 2: </u>Calculate the new volume
Charles' gas law says
V1/T1 = V2/T2
V
1 is the initial volume and T1 is the initial temperature
V2 is the final volume and T2 is the final temperature
35 L / 303 Kelvin = V2 / 333 Kelvin
V2 = 35L * 333 Kelvin / 303 Kelvin
V2 = 38.47L ≈ 38.5 L
The new volume of the balloon is 38.5 L
Answer:
increase in temperature of the intrinsic semiconductor
Explanation:
- If the p-side has a higher doping concentration, it implies that number of holes (positive ion) increased which is greater than number of electron (negative ion) in the n-side
- in order to balance the intrinsic concentration, that is to balance the number of holes and electrons which depends on temperature.
- an increase in the temperature of the intrinsic semiconductor (p-side), increases the number of electron but number of holes remains constant.
A balance in the intrinsic concentration helps in tuning to the same radio channel.
Answer:
325mg of Aspririn
Explanation:
First you should note the information that the problem gives you:
- The bottle of Aspirin has 5gr (grains)
- 1gr(grain) = 65mg (miligrams)
Also, the problem is asking about how many aspirin are in 5 gr (grains), so you should use a conversion factor, as follows:
-First you should put the quantity you need to convert:

-Then you write the denominator of the conversion factor that must have the same units that you want to convert, in this case gr:

-Then you write the numerator with the units that you want to obtain and the numerical equivalence between the units, in this case:

-Finally you multiply numerators and divide by denominators:

Answer:
According to the law of conservation of mass, the mass of reactants will be equal to the mass of the products.
Explanation: