Answer:
31465 ways
Step-by-step explanation:
Given data
Let us apply the combination formula
nCr = n! / r! * (n - r)!
n= 31
r= 4
substitute
= 31!/4!(31-4)!
= 31!/4!(27)!
= 31*30*29*28*27!/ 4!(27)!
= 31*30*29*28/4!
=31*30*29*28/4*3*2*1
=755160/24
=31465 ways
Hence there are 31465 possible ways to rank it
Using the normal distribution, it is found that there is a 0.0436 = 4.36% probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
In this problem, the mean and the standard deviation are given, respectively, by:
.
The probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters is <u>one subtracted by the p-value of Z when X = 4</u>, hence:


Z = 1.71
Z = 1.71 has a p-value of 0.9564.
1 - 0.9564 = 0.0436.
0.0436 = 4.36% probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters.
More can be learned about the normal distribution at brainly.com/question/24663213
#SPJ1
Answer:
no
Step-by-step explanation:
i just know
Answer:
Step-by-step explanation:
The first thing we are going to do is to fill in the other angles that we need to solve this problem. You could find ALL of them but all of them isn't necessary. So looking at the obtuse angle next to the 35 degree angle...we know that those are supplementary so 180 - 35 = the obtuse angle in the small triangle. 180 - 35 = 145. Within the smaller triangle we have now the 145 and the 10, and since, by the Triangle Angle-Sum Theorem all the angles have to add up to equal 180, then 180 - (10 + 145) = the 3rd angle, so the third angle is 180 - 155 = 25. Now let's get to the problem. If I were you, I'd draw that out like I did to keep track of these angles cuz I'm going to name them by their degree. In order to find d, we need to first find the distance between d and the right angle. We'll call that x. The reference angle is 35, the side opposite that angle is 12 and the side we are looking for, x, is adjacent to that angle. So we will use the tan ratio to find x:
Isolating x:
so
x = 17.1377 m
Now we have everything we need to find d. We will use 25 degrees as our reference angle, and the side opposite it is 12 and the side adjacent to it is
d + 17.1377, so that is the tan ratio as well:
and simplifying a bit:
and a bit more:
d + 17.1377 = 25.73408 so
d = 8.59, rounded