1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
3 years ago
7

Tripping ran 4.8 times as many laps as Tony.If Tony ran3.7 laps how many laps did tripping run

Mathematics
2 answers:
Usimov [2.4K]3 years ago
7 0
This is a simple multiplication question. 
 
4.8 x 3.7=17.76

Tripping ran 17.76 laps.

Check: 17/76/4.8=3.7
Fittoniya [83]3 years ago
5 0
You simply multiply 4.8 and 3.7 because if you notice the word "times," it explains you that you need to do multiplication.


4.8*3.7 = 17.76


So, Tripping ran 17.76 laps.


HOPE THIS HELPS!!!!
You might be interested in
Leslie and Daniel plan to put an above-ground pool in the backyard of their new home. The backyard is rectangular, 30 feet by 50
Brut [27]
1047.84ft² is not covered by the pool.
Find the area of the yard covered by pull using the area of a circle formula (the height is irrelevant in this case). If the diameter of the pool is 24 feet, its radius is 12 (half of the diameter)

A = 3.14r^2
A =3.14(144)
A = 452.16 ft²

Subtract the area of the pool from the area of the yard to get the area of the yard that is not covered by the pool. If the dimensions of the yard are 30ft by 50ft, you multiply them to get the area: 1500ft²

Total yard area: 1,500ft²
Area of yard without pool: 1,500ft² - 452.16ft² = 1047.84ft²
4 0
3 years ago
In a competitive examination negative marks of 2 are awarded for each wrong answers and 4 marks for every correct answer. If nee
Alex777 [14]

9514 1404 393

Answer:

  Rajan gets 6 marks more

Step-by-step explanation:

Neerav's marks are (15)(4) +(5)(-2) = 60 -10 = 50.

Rajan's marks are (14)(4) = 56.

Rajan gets 6 more marks than Neerav.

3 0
2 years ago
Leo's bank balances at the end of months 1, 2, and 3 are $1500, $1530, and $1560.60,
grandymaker [24]

Leo's balance after 9 months will be: $1757.49

Step-by-step explanation:

It is given that the balances follow a geometric sequence

First of all, we have to find the common ratio

Here

a_1 = 1500\\a_2 = 1530\\a_3 = 1560.60

Common ratio is:

r = \frac{a_2}{a_1} = \frac{1530}{1500} = 1.02\\r = \frac{a_3}{a_2} = \frac{1560.60}{1530} = 1.02

So r = 1.02

The general form for geometric sequence is:

a_n = a_1r^{n-1}

Putting the first term and r

a_n = 1500 . (1.02)^{n-1}

To find the 9th month's balance

Putting n=9

a_9 = 1500 . (1.02)^{9-1}\\= 1500.(1.02)^8\\=1757.4890

Rounding off to nearest hundredth

$1757.49

Hence,

Leo's balance after 9 months will be: $1757.49

Keywords: Geometric sequence, balance

Learn more about geometric sequence at:

  • brainly.com/question/10772025
  • brainly.com/question/10879401

#LearnwithBrainly

5 0
3 years ago
the slide at the playground has a height of 6 feet.The base of the slide measured on the ground is 8 feet.what is the length of
NemiM [27]
The formula for finding the length is
{a}^{2}  +  {b}^{2} = {c}^{2}
All we have to do is plug in the numbers.

{6}^{2}  +  {8}^{2}  =  {c}^{2}
36 + 64 = 100

Since 100 =
{c}^{2}
we have to find the square root.

\sqrt{100}  = 10

The length of the slide is 10 feet.

6 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
Other questions:
  • Classify the area of a circle with a radius of 0.75 centimeters as either rational or irrational.
    12·1 answer
  • Zach bought jet skis for 15 $480. He will make 36 equal payments. How much will each payment be?
    6·1 answer
  • Decide if each of the triangles is a right triangle. The figures are r
    11·2 answers
  • What are the solution(s) of 3x2 + 13x + 14 = 0? Select the two correct two answers.
    7·1 answer
  • Find the 40th term of the following arithmetic sequence: 16, 6, –4, –14.
    7·1 answer
  • Set up the equation for the area of a triangle in
    7·1 answer
  • It’s twice a number is divided by five the results is 4
    15·1 answer
  • How can I solve it.​
    12·1 answer
  • What is another vocabulary word for slope?
    8·1 answer
  • Find angle X. <br> I am not sure if it should add up to 360 degrees or 180 degrees
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!