Answer:
One possible equation is
, which is equivalent to
.
Step-by-step explanation:
The factor theorem states that if
(where
is a constant) is a root of a function,
would be a factor of that function.
The question states that
and
are
-intercepts of this function. In other words,
and
would both set the value of this quadratic function to
. Thus,
and
would be two roots of this function.
By the factor theorem,
and
would be two factors of this function.
Because the function in this question is quadratic,
and
would be the only two factors of this function. In other words, for some constant
(
):
.
Simplify to obtain:
.
Expand this expression to obtain:
.
(Quadratic functions are polynomials of degree two. If this function has any factor other than
and
, expanding the expression would give a polynomial of degree at least three- not quadratic.)
Every non-zero value of
corresponds to a distinct quadratic function with
-intercepts
and
. For example, with
:
, or equivalently,
.
Answer:
If all you care about is whether you roll 2 or not, you get a Binomial distribution with an individual success probability 1/6. The probability of rolling 2 at least two times, is the same as the probability of not rolling 2 at zero or one time.
the answer is, 1 - bin(k=0, n=4, r=1/6) - bin(k=1, n=4, r=1/6). This evaluates to about 13%, just like your result (you just computed all three outcomes satisfying the proposition rather than the two that didn’t).
Step-by-step explanation:
Answer:
f^-1 (x) = x^2 + 5
Step-by-step explanation:
f(x) = √x - 5
replace x with y
x= √y - 5
solve for y,
x =√y-5
x^2 + 5
Answer -
f^-1(x) = x^2 + 5
HOPES THIS HELPS :)
The answer I believe is c
Cristian! Si ocupas el resultado es 0.375 (el de cristian)