To solve this problem you must apply the proccedure shown below:
1. Let's round the value to the nearest hundredth. As you can see, the digit 8 is in the thousandths place and is greater than 5, therefore, you must round up to 0.038.
2. Now express the value as a single digit times a power of 10, as following:
x
Therefore, the answer is:
x
Answer:
I don't get what you are trying to say I think you need to put it in better understanding
Answer:
The area of any regular polygon is given by the formula: Area = (a x p)/2, where a is the length of the apothem and p is the perimeter of the polygon. Plug the values of a and p in the formula and get the area. As an example, let's use a hexagon (6 sides) with a side (s) length of 10.
The area of a polygon is the two-dimensional set of all points surrounded by the sides of the polygon.
If you're looking for an equation, it varies based on the number of sides and the shape of the polygon.
Step-by-step explanation:
Apothem
A regular polygon is equilateral (it has equal sides) and equiangular (it has equal angles). To find the area of a regular polygon, you use an apothem — a segment that joins the polygon’s center to the midpoint of any side and that is perpendicular to that side (segment HM in the following figure is an apothem).
Answer:
Rate of slower bus; 90 km/h
Rate of faster bus; 102 km/b
Step-by-step explanation:
We know that formula do distance is;
Distance = speed/time
We are told that One bus travels 12h slower than the other.
Let speed of slower bus be x.
Thus;
Speed of faster bus = x + 12
Speed of slower bus = x
After 3 hours, distance by faster bus = 3(x + 12)
Speed of slower bus = 3x
Since the towns are 576 km apart, then;
3(x + 12) + 3x = 576
Divide through by 3 to get;
x + 12 + x = 192
2x + 12 = 192
2x = 192 - 12
2x = 180
x = 180/2
x = 90 km/h
Faster bus speed = 90 + 12 = 102 km/h
The functions supplied appear to be the same? Regardless:
We have the equation y = 5x.
Therefore the gradient of this graph will be 5, so for every 1 increase in the y axis, there will be 5 in the x.
It will appear as a straight line passing through the origin and the point (1, 5).