Answer:
A
Step-by-step explanation:
SAS = side-angle-side
This means that, in order to prove that the triangles are congruent, they must have two congruent sides with the angle between them to the same.
We know that sides AB, ED, AC, and DF are all congruent as they all have a single mark through them. From this, you can conclude that the triangles already share two sides. All we need now is the angles in between to be congruent. This means that angle A and angle D need to be congruent.
I hope this helps!
Answer:
216
Step-by-step explanation:
y=k÷x
k=xy
k=9×24
k=216
Answer:
its 60 all around
Step-by-step explanation:
Answer:
tan(2u)=[4sqrt(21)]/[17]
Step-by-step explanation:
Let u=arcsin(0.4)
tan(2u)=sin(2u)/cos(2u)
tan(2u)=[2sin(u)cos(u)]/[cos^2(u)-sin^2(u)]
If u=arcsin(0.4), then sin(u)=0.4
By the Pythagorean Identity, cos^2(u)+sin^2(u)=1, we have cos^2(u)=1-sin^2(u)=1-(0.4)^2=1-0.16=0.84.
This also implies cos(u)=sqrt(0.84) since cosine is positive.
Plug in values:
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.84-0.16]
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.68]
tan(2u)=[(0.4)(sqrt(0.84)]/[0.34]
tan(2u)=[(40)(sqrt(0.84)]/[34]
tan(2u)=[(20)(sqrt(0.84)]/[17]
Note:
0.84=0.04(21)
So the principal square root of 0.04 is 0.2
Sqrt(0.84)=0.2sqrt(21).
tan(2u)=[(20)(0.2)(sqrt(21)]/[17]
tan(2u)=[(20)(2)sqrt(21)]/[170]
tan(2u)=[(2)(2)sqrt(21)]/[17]
tan(2u)=[4sqrt(21)]/[17]
Answer:
5.0 ft - 5.6 ft
Step-by-step explanation:
Given that the structure is to be made using two 12 foot boards, then we expect the total perimeter to be equal to (2*12)= 24 ft.
Using the angle of elevation, 40° and the width of 8 ft then you can apply the formula for tangent of a triangle where ;
Tan α = opposite side length/adjacent length
Tan 40°= h/8
h= 8 tan 40° = 6.71 ft
Applying the cosine of an angle formula to find the length of the sliding side
Cosine β = adjacent length /hypotenuse
Cosine 40°= 8/ sliding side length
sliding side length = 8/cosine 40° =10.44 ft
Checking the perimeter = 10.44 +8+6.71= 25.15 ft
This is more than the total lengths of the boards, so you need to adjust the height as;
24 - 18.44 = 5.56 ft ,thus the height should be less or equal to 5.56 ft
h≤ 5.6 ft