Answer:
<em>x = 0.05</em>
<em>x = 1.57</em>
Step-by-step explanation:
The given equation is:

Moving all terms to the left side:

Now we define a function:

The solutions of the equation are the values of x such that y=0.
Since the function cannot be solved by algebraic methods, we use a graphing tool.
Those points where the graph crosses the x-axis are solutions of the equation.
Please refer to the graph in the figure below.
We can clearly identify there are two solutions at
x = 0.05
x = 1.57
The smallest natural number is 1. The largest natural number does not exists because there will always be one even larger. But if you are asking the number of all natural numbers or the size of natural number set then
is your answer.
Area(A)= lw
perimeter(P)= 2w+2l= 34in
length(l)= w+5
width(w)= w
1/2 P= 17= w+l
17= w+(w+5)
17= 2w+5
2w=12
w=6 in
l= w+5
l= 6+5
l=11 in
A= lw= (11)(6)= 66in²
Answer:
Area of rectangle is 66 in².
Answer:
g'(0) = 0
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Pre-Calculus</u>
<u>Calculus</u>
- Derivatives
- Derivative Notation
- The derivative of a constant is equal to 0
- Derivative Property:
![\frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
- Trig Derivative:
![\frac{d}{dx} [cos(x)] = -sin(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcos%28x%29%5D%20%3D%20-sin%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
g(x) = 8 - 10cos(x)
x = 0
<u>Step 2: Differentiate</u>
- Differentiate [Trig]: g'(x) = 0 - 10[-sin(x)]
- Simplify Derivative: g'(x) = 10sin(x)
<u>Step 3: Evaluate</u>
- Substitute in <em>x</em>: g'(0) = 10sin(0)
- Evaluate Trig: g'(0) = 10(0)
- Multiply: g'(0) = 0
✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨
<em><u>hope it helps you see the attachment for further information...... </u></em>
<em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em><em><u>⚡</u></em>