Answer:
he bought the t shirt for rs 1880
Answer: the tuition in 2020 is $502300
Step-by-step explanation:
The annual tuition at a specific college was $20,500 in 2000, and $45,4120 in 2018. Let us assume that the rate of increase is linear. Therefore, the fees in increasing in an arithmetic progression.
The formula for determining the nth term of an arithmetic sequence is expressed as
Tn = a + (n - 1)d
Where
a represents the first term of the sequence.
d represents the common difference.
n represents the number of terms in the sequence.
From the information given,
a = $20500
The fee in 2018 is the 19th term of the sequence. Therefore,
T19 = $45,4120
n = 19
Therefore,
454120 = 20500 + (19 - 1) d
454120 - 20500 = 19d
18d = 433620
d = 24090
Therefore, an
equation that can be used to find the tuition y for x years after 2000 is
y = 20500 + 24090(x - 1)
Therefore, at 2020,
n = 21
y = 20500 + 24090(21 - 1)
y = 20500 + 481800
y = $502300
That is a ratio. 7 x 3 = 21 and 13 x 3 = 39.
Ok so do 100 divided by 77 to get about 1.3% per fruit. then do 1.3 times 53 to get the current percent of oranges which is about 69% then do 84% minus 69% to get the difference then divide by 1.3 to get about 11.5 oranges so you round to 12 oranges. So 12+53 to get 65 total oranges to equal 84% of the 77 fruit in the box.
Answer: ~4.12 times larger
Step-by-step explanation:
1. find the values for both equation, (8*106=848) and (2*103=206).
2. divide the larger number by the smaller one. 848/206
which gives us 4.11650485, or <u>4.12</u> rounded.
hope this helped! ♡