1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
posledela
3 years ago
5

Here's a subtraction problem that has been solved incorrectly.

Mathematics
1 answer:
stealth61 [152]3 years ago
7 0
The answer would be B!
You might be interested in
Please help me!..........
Anastaziya [24]

Answer:

<h2>$39,000</h2>

Step-by-step explanation:

Look at the picture.

To find the Median, place the numbers in value order and find the middle number (right picture).

Median = $39,000

4 0
3 years ago
What is the product?<br> (3x-5)(22-7x+1)
Gelneren [198K]

answer

1. expand the equation

3x(22-7x+1)-5(22-7x+1)

66x-21x²+3x-110+35x-5

104x-21x²-115

6 0
2 years ago
Dy/dx = 2xy^2 and y(-1) = 2 find y(2)
Anarel [89]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/2887301

—————

Solve the initial value problem:

   dy
———  =  2xy²,      y = 2,  when x = – 1.
   dx


Separate the variables in the equation above:

\mathsf{\dfrac{dy}{y^2}=2x\,dx}\\\\&#10;\mathsf{y^{-2}\,dy=2x\,dx}


Integrate both sides:

\mathsf{\displaystyle\int\!y^{-2}\,dy=\int\!2x\,dx}\\\\\\&#10;\mathsf{\dfrac{y^{-2+1}}{-2+1}=2\cdot \dfrac{x^{1+1}}{1+1}+C_1}\\\\\\&#10;\mathsf{\dfrac{y^{-1}}{-1}=\diagup\hspace{-7}2\cdot \dfrac{x^2}{\diagup\hspace{-7}2}+C_1}\\\\\\&#10;\mathsf{-\,\dfrac{1}{y}=x^2+C_1}

\mathsf{\dfrac{1}{y}=-(x^2+C_1)}


Take the reciprocal of both sides, and then you have

\mathsf{y=-\,\dfrac{1}{x^2+C_1}\qquad\qquad where~C_1~is~a~constant\qquad (i)}


In order to find the value of  C₁  , just plug in the equation above those known values for  x  and  y, then solve it for  C₁:

y = 2,  when  x = – 1. So,

\mathsf{2=-\,\dfrac{1}{1^2+C_1}}\\\\\\&#10;\mathsf{2=-\,\dfrac{1}{1+C_1}}\\\\\\&#10;\mathsf{-\,\dfrac{1}{2}=1+C_1}\\\\\\&#10;\mathsf{-\,\dfrac{1}{2}-1=C_1}\\\\\\&#10;\mathsf{-\,\dfrac{1}{2}-\dfrac{2}{2}=C_1}

\mathsf{C_1=-\,\dfrac{3}{2}}


Substitute that for  C₁  into (i), and you have

\mathsf{y=-\,\dfrac{1}{x^2-\frac{3}{2}}}\\\\\\&#10;\mathsf{y=-\,\dfrac{1}{x^2-\frac{3}{2}}\cdot \dfrac{2}{2}}\\\\\\&#10;\mathsf{y=-\,\dfrac{2}{2x^2-3}}


So  y(– 2)  is

\mathsf{y\big|_{x=-2}=-\,\dfrac{2}{2\cdot (-2)^2-3}}\\\\\\&#10;\mathsf{y\big|_{x=-2}=-\,\dfrac{2}{2\cdot 4-3}}\\\\\\&#10;\mathsf{y\big|_{x=-2}=-\,\dfrac{2}{8-3}}\\\\\\&#10;\mathsf{y\big|_{x=-2}=-\,\dfrac{2}{5}}\quad\longleftarrow\quad\textsf{this is the answer.}


I hope this helps. =)


Tags:  <em>ordinary differential equation ode integration separable variables initial value problem differential integral calculus</em>

7 0
3 years ago
Need help thanks in advanced
olga55 [171]

Answer:-1

Step-by-step explanation:

3 0
3 years ago
Simplify cos(θ) − sec(θ) /<br> sin(θ)
Salsk061 [2.6K]
<span>Replace tan θ with sin θ/cos θ

= sin²θ/cos θ + cos θ

Now multiply the right-hand side by cos θ/cos θ to get the same denominator:

= sin²θ/cos θ + cos²θ/cos θ
= (sin²θ + cos²θ)/cos θ

The numerator is equivalent to 1:

= 1 / cos θ
= sec θ</span>
7 0
3 years ago
Other questions:
  • Match the pairs of variables with the type of relationship they show.
    7·1 answer
  • On June 1, a fast-growing species of algae is accidentally introduced into a lake in a city park. It starts to grow and
    14·1 answer
  • Can I get help on B please
    10·1 answer
  • On a piece of paper, use a protractor to construct △ABC with m∠A=30° , m∠B=60° , and m∠C=90° . Which statements about the triang
    9·2 answers
  • Factor completely.<br><br> 48y^2 + 82y – 70<br><br> please help and show work. super confused :P
    8·1 answer
  • Help me simplify this
    11·2 answers
  • Write your question here (keep it simple and easy to read)<br><br> can i get a hoya
    5·2 answers
  • What is the range for the following set of numbers?57, -5, 11, 39, 56, 82, -2, 11, 64, 18, 37, 15, 68
    6·1 answer
  • Is the given value of the variable a solution of the equation? Write yes or no. The first one is done for you. 1. x  1  5; x 
    8·1 answer
  • Please help me- please-
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!