1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
masha68 [24]
3 years ago
13

In Exercises 11-18, use analytic methods to find the extreme values of the function on the interval and where they occur. Identi

fy any critical points that are not stationary points.
15. f(x) = sin(x + π/4), 0 ≤ x ≤ 7π/4
Mathematics
1 answer:
Colt1911 [192]3 years ago
6 0

Answer:

Absolute maximum of 1 at x = pi/4 ; (\frac{\pi}{4}, \ 1)

Absolute minimum of -1 at x = 5pi/4 ; (\frac{5\pi}{4} , \ -1)

Local maximum of √2/2 at x = 0 ; (0, \ \frac{\sqrt{2} }{2} )

Local minimum of 0 at x = 7pi/4 ; (\frac{7\pi}{4}, \ 0)

No critical points that are not stationary points.

Step-by-step explanation:

f(x)=sin(x+\frac{\pi}{4} ), \ 0 \leq x\leq \frac{7 \pi}{4}

<h2>Take Derivative of f(x):</h2>

Let's start by taking the derivative of the function.

Use the power rule and the chain rule to take the derivative of f(x).

  • f'(x)=\frac{d}{dx}  [sin(x+\frac{\pi}{4})] \times \frac{d}{dx}  (x+\frac{\pi}{4})

The derivative of sin(x) is cos(x), so we can write this as:

  • f'(x)=cos(x+\frac{\pi}{4})\times \frac{d}{dx}  (x+\frac{\pi}{4})

Now, we can apply the power rule to x + pi/4.

  • f'(x)=cos(x+\frac{\pi}{4} ) \times 1
  • f'(x)=cos(x+\frac{\pi}{4} )
<h2>Critical Points: Set f'(x) = 0</h2>

Now that we have the first derivative of f(x)=sin(x+\frac{\pi}{4}), let's set the first derivative to 0 to find the critical points of this function.

  • 0=cos(x+\frac{\pi}{4})

Take the inverse cosine of both sides of the equation.

  • cos^-^1(0) = cos^-^1[cos(x+\frac{\pi}{4})]

Inverse cosine and cosine cancel out, leaving us with x + pi/4. The inverse cosine of 0 is equal to 90 degrees, which is the same as pi/2.

  • \frac{\pi}{2} = x +\frac{\pi}{4}

Solve for x to find the critical points of f(x). Subtract pi/4 from both sides of the equation, and move x to the left using the symmetric property of equality.

  • x=\frac{\pi}{2}- \frac{\pi}{4}
  • x=\frac{2 \pi}{4}-\frac{\pi}{4}
  • x=\frac{\pi}{4}

Since we are given the domain of the function, let's use the period of sin to find our other critical point: 5pi/4. This is equivalent to pi/4. Therefore, our critical points are:

  • \frac{\pi}{4}, \frac{5 \pi}{4}  
<h2>Sign Chart(?):</h2>

Since this is a sine graph, we don't need to create a sign chart to check if the critical values are, in fact, extreme values since there are many absolute maximums and absolute minimums on the sine graph.

There will always be either an absolute maximum or an absolute minimum at the critical values where the first derivative is equal to 0, because this is where the sine graph curves and forms these.

Therefore, we can plug the critical values into the original function f(x) in order to find the value at which these extreme values occur. We also need to plug in the endpoints of the function, which are the domain restrictions.

Let's plug in the critical point values and endpoint values into the function f(x) to find where the extreme values occur on the graph of this function.

<h2>Critical Point Values:</h2>
  • f(\frac{\pi}{4} )=sin(\frac{\pi}{4} + \frac{\pi}{4} ) \\ f(\frac{\pi}{4} )=sin(\frac{2\pi}{4}) \\ f(\frac{\pi}{4} )=sin(\frac{\pi}{2}) \\ f(\frac{\pi}{4} )=1

There is a maximum value of 1 at x = pi/4.

  • f(\frac{5\pi}{4} )=sin(\frac{5\pi}{4} + \frac{\pi}{4} ) \\ f(\frac{5\pi}{4} )=sin(\frac{6\pi}{4}) \\ f(\frac{5\pi}{4}) = sin(\frac{3\pi}{2}) \\ f(\frac{5\pi}{4} )=-1

There is a minimum value of -1 at x = 5pi/4.

<h2>Endpoint Values:</h2>
  • f(0) = sin((0) + \frac{\pi}{4}) \\ f(0) = sin(\frac{\pi}{4}) \\ f(0) = \frac{\sqrt{2} }{2}

There is a maximum value of √2/2 at x = 0.

  • f(\frac{7\pi}{4} ) =sin(\frac{7\pi}{4} +\frac{\pi}{4}) \\  f(\frac{7\pi}{4} ) =sin(\frac{8\pi}{4}) \\ f(\frac{7\pi}{4} ) =sin(2\pi) \\ f(\frac{7\pi}{4} ) =0

There is a minimum value of 0 at x = 7pi/4.

We need to first compare the critical point values and then compare the endpoint values to determine whether they are maximum or minimums.

<h2>Stationary Points:</h2>

A critical point is called a stationary point if f'(x) = 0.

Since f'(x) is zero at both of the critical points, there are no critical points that are not stationary points.  

You might be interested in
Using set notation;
Lostsunrise [7]

Answer:

25.

Step-by-step explanation:

The number of women employed = 100 - 65 = 35.

So the number of men paid weekly = 60 - 35

= 25.

5 0
3 years ago
Read 2 more answers
The Nuthouse offers a mixture of soy nuts and almonds, Almonds
elena55 [62]

Answer:

  14 pounds

Step-by-step explanation:

The given equations can be solved for y by substituting for x. The first equation is convenient for writing x in terms of y.

<h3>Solution</h3>

  x = 20 -y . . . . . . . subtract y from the first equation

  7(20 -y) +5.5y = 119 . . . . . substitute for x in the second equation

  140 -1.5y = 119 . . . . . . . . simplify

  21 = 1.5y . . . . . . . . . . . add 1.5y -119 to both sides

  14 = y . . . . . . . . . . . .divide by 1.5

14 pounds of soy nuts should be used in the mixture.

__

<em>Additional comment</em>

There are many ways to solve a system of two linear equations. The attachments shows a matrix solution using a suitable calculator. It tells us that x=6 and y=14, as we found above.

6 0
2 years ago
V)<br> a common multiple of 6 and 8,<br> What number is a common multiple of 6 and 8?
Vaselesa [24]

Answer:

6, 12, 18, 24, 30, 36, etc.

4 0
3 years ago
Read 2 more answers
Suppose there is a pile of​ quarters, dimes, and pennies with a total value of ​$1.06. ​How much of each coin can be present wit
SpyIntel [72]
Hello,

I note (a,b,c) the result of a quarters, b dimes and c pennies:


2 solutions:
106=( 3, 3, 1)=( 1, 8, 1)



106=( 0, 0, 106) but : 100= 0*25+ 0*10+ 100
106=( 0, 1, 96) but : 100= 0*25+ 1*10+ 90
106=( 0, 2, 86) but : 100= 0*25+ 2*10+ 80
106=( 0, 3, 76) but : 100= 0*25+ 3*10+ 70
106=( 0, 4, 66) but : 100= 0*25+ 4*10+ 60
106=( 0, 5, 56) but : 100= 0*25+ 5*10+ 50
106=( 0, 6, 46) but : 100= 0*25+ 6*10+ 40
106=( 0, 7, 36) but : 100= 0*25+ 7*10+ 30
106=( 0, 8, 26) but : 100= 0*25+ 8*10+ 20
106=( 0, 9, 16) but : 100= 0*25+ 9*10+ 10
106=( 0, 10, 6) but : 100= 0*25+ 10*10+ 0
106=( 1, 0, 81) but : 100= 1*25+ 0*10+ 75
106=( 1, 1, 71) but : 100= 1*25+ 1*10+ 65
106=( 1, 2, 61) but : 100= 1*25+ 2*10+ 55
106=( 1, 3, 51) but : 100= 1*25+ 3*10+ 45
106=( 1, 4, 41) but : 100= 1*25+ 4*10+ 35
106=( 1, 5, 31) but : 100= 1*25+ 5*10+ 25
106=( 1, 6, 21) but : 100= 1*25+ 6*10+ 15
106=( 1, 7, 11) but : 100= 1*25+ 7*10+ 5
106=( 1, 8, 1) is good
106=( 2, 0, 56) but : 100= 2*25+ 0*10+ 50
106=( 2, 1, 46) but : 100= 2*25+ 1*10+ 40
106=( 2, 2, 36) but : 100= 2*25+ 2*10+ 30
106=( 2, 3, 26) but : 100= 2*25+ 3*10+ 20
106=( 2, 4, 16) but : 100= 2*25+ 4*10+ 10
106=( 2, 5, 6) but : 100= 2*25+ 5*10+ 0
106=( 3, 0, 31) but : 100= 3*25+ 0*10+ 25
106=( 3, 1, 21) but : 100= 3*25+ 1*10+ 15
106=( 3, 2, 11) but : 100= 3*25+ 2*10+ 5
106=( 3, 3, 1) is good
106=( 4, 0, 6) but : 100= 4*25+ 0*10+ 0






5 0
3 years ago
Can somebody please help answer this word problem using grass method? And showing how u get the answer thanks!!!
xxTIMURxx [149]

Answer:3/20

Step-by-step explanation:

Fraction of total area mowed = (3/5) + (1/4) = 17/20

Therefore fraction of total area left = 1 - (17/20) = (20/20) - (17/20) = 3/20

8 0
2 years ago
Other questions:
  • Can anyone tell me the rules for rounding of digits? plz ASAP
    9·2 answers
  • 540 min =_______________hr
    14·2 answers
  • Help ASAP. Need this answered
    9·1 answer
  • Suppose the initial height of a Pumpkin is 12 feet and the pumpkin is being launched with a velocity of 61 feet per second. Use
    5·1 answer
  • Which of the following best describes the algebraic expression x/6-1?
    14·1 answer
  • Round to 2 decimal places<br> 0.607
    5·1 answer
  • A: 70x+30=20x+50<br> B: 70x-30=20x-50<br> C: 70+30x=20+50x<br> D: (70+30)x=(20+50)x
    8·2 answers
  • Month- Balance (dollars)
    9·1 answer
  • What is 94.53 ÷ 2.3? <br>O 41.1 <br>O4.11 <br>O 411 <br>O 0.411​
    11·1 answer
  • Please help me with this question​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!