Given the compound statement <span>(p∨q)∧r
where: p: 5 < -3
q : All vertical angles are congruent.
r: 4x = 36, then x = 9.
Recall the in logic, '</span>∨' symbolises "or" while '∧' symbolises "and".
Therefore, the compound statement <span>(p∨q)∧r can be written as follows:
Either 5 < -3 or all vertical angles are congruent, and if 4x = 36, then x = 9.
</span>
Answer:(3x + 7) (x +5)
Step-by-step explanation:
Answer:
7
Step-by-step explanation:
6+12=18
25-7=18
7 makes the sentance true.
Answer:
Taater is a good friend of mine.
Step-by-step explanation:
The answer would be the third option, hope I'm just as helpful in times of need if its possible to subtract those then it's 100% the first option. Sorry don't exactly know this, so I'm at least trying to help.
Answer:
- height: 9 chi 6 cun
- width: 2 chi 8 cun
Step-by-step explanation:
The factor-of-ten relationship between the different units means we can combine the numbers in decimal fashion. If 1 unit is 1 zhang, then 1 chi is 0.1 zhang and 1 cun is 0.01 zhang. Hence 6 chi 8 cun is 0.68 zhang.
Let x and y represent the width and height, respectively. In terms of zhang, we have ...
y - x = 0.68
x^2 +y^2 = 1^2
Substituting y = 0.68 +x into the second equation gives ...
x^2 + (x +0.68)^2 = 1
2x^2 +1.36x - 0.5376 = 0 . . . . . eliminate parentheses, subtract 1
Using the quadratic formula, we have ...
x = (-1.36 ±√(1.36^2 -4(2)(-0.5376)))/(2·2) = (-1.36 ±√6.1504)/4
x = 0.28 . . . . . the negative root is of no interest
y = 0.28 +0.68 = 0.96
In units of chi and cun, the dimensions are ...
height: 9 chi 6 cun
width: 2 chi 8 cun