Answer:
The parent function shifted right 2 units
Step-by-step explanation:
When functions are transformed there are a few simple rules:
• Adding/subtracting inside the parenthesis to the input shifts the function left(+) and right(-).
• Adding/subtracting outside the parenthesis to the output shifts the function up(+) and down(-).
• Multiplying the function by a number less than 1 compresses it towards the x-axis.
• Multiplying the function by a number greater than 1 stretches it away from the x-axis.
The square root graph normally starts at (0,0) but on the graph it starts at (2,0). This means it has moved 2 units to the right.
Answer:
5.3
Step-by-step explanation:
To find the mean you must add up all the numbers in the set then divide them by the number of numbers in said set.
Step-by-step explanation:
how can we make sure the person that we have to talk is in a better position for the future 50th I am going through my financial statements to the extent I
Answer:
Step-by-step explanation:
hello .....
note : the slope of the line (AB) is :
m = (YB -YA)/(XB - XA)
given : A(9,-4) and B (1,-5)
m= ((-5)-(-4))/(1-9)
m= 1/8
Answer:
the first option
Step-by-step explanation:
variability !
what does that word tell us ?
it means that there are more individuals differences.
you could also use "accuracy" as the opposite - we are aiming for the mean value ...
imagine some bow and arrow tournament.
who wins ?
the person with the highest accuracy across all the attempts (and that means the lowest variability in the results across all attempts relatively to the target center representing the predefined mean value).
now look at the graphic for neighborhood A.
and then for neighborhood B.
which one has the data points more clustered around the center (where the mean value is going to be) ? this one has lower variability than the one where the data points are having more than one cluster or are even all over the place.
remember, for the variability you have to add all the differences to the mean value. the smaller the differences to the mean value, the smaller the variability.
in neighborhood B almost all data points have a larger difference to the mean value.
so, the variability will be higher here.