Answer:
Step-by-step explanation:
Final Answer: 19.5%
To be honest the correct answer would be just 5 because of estimation
so it would be 5.1754386 circle the 5 underline the 1 and Badda bing Badda boom because if something is bigger than 5 you round up one if its lower than leave your beautiful number
(f∘g)(x) is equivalent to f(g(x)). We solve this problem just as we solve f(x). But since it asks us to find out f(g(x)), in f(x), each time we encounter x, we replace it with g(x).
In the above problem, f(x)=x+3.
Therefore, f(g(x))=g(x)+3.
⇒(f∘g)(x)=2x−7+3
⇒(f∘g)(x)=2x−4
Basically, write the g(x) equation where you see the x in the f(x) equation.
f∘g(x)=(g(x))+3 Replace g(x) with the equation
f∘g(x)=(2x−7)+3
f∘g(x)=2x−7+3 we just took away the parentheses
f∘g(x)=2x−4 Because the −7+3=4
This is it
g∘f(x) would be the other way around
g∘f(x)=2(x+3)−7
now you have to multiply what is inside parentheses by 2 because thats whats directly in front of them.
g∘f(x)=2x+6−7
Next, +6−7=−1
g∘f(x)=2x−1
Its a lts easier than you think!
Hope this helped
Answer:
hold on its its.............oh yeah 21
Answer:
We use Baye's theorem: P(A)P(B|A) = P(B)P(A|B)
with (A) being defective and
(B) marked as defective
we have to find P(B) = P(A).P(B|A) + P(¬A)P(B|¬A). .......eq(2)
Since P(A) = 0.1 and P(B|A)=0.9,
P(¬A) = 1 - P(A) = 1 - 0.1 = 0.9
and
P(B|A¬) = 1 - P(¬B|¬A) = 1 - 0.85 = 0.15
put these values in eq(2)
P(B) = (0.1 × 0.9) + (0.9 × 0.15)
= 0.225 put this in eq(1) and solve for P(B)
P(B) = 0.4