For this case, as Josh worked more than 40 hours, he was able to receive a payment
($ 8.20 / h) * (40 h) = 328
1.5(8.20) *8.75 = <span>
<span>107.625
</span></span> 328+107.625= 435.625
the gross earnings for Pruitt are 435.625 $
Since the sample is greater than 10, we can approximate this binomial problem with a normal distribution.
First, calculate the z-score:
z = (x - μ) / σ = (37000 - 36000) / 7000 = 0.143
The probability P(x > 37000$) = 1 - P(<span>x < 37000$),
therefore we need to look up at a normal distribution table in order to find
P(z < 0.143) = 0.55567
And
</span>P(x > 37000$) = 1 - <span>0.55567 = 0.44433
Hence, there is a 44.4% probability that </span><span>the sample mean is greater than $37,000.</span>
Answer:
a) A. The population must be normally distributed
b) P(X < 68.2) = 0.7967
c) P(X ≥ 65.6) = 0.3745
Step-by-step explanation:
a) The population is normally distributed having a mean (
) = 64 and a standard deviation (
) = 
b) P(X < 68.2)
First me need to calculate the z score (z). This is given by the equation:
but μ=64 and σ=19 and n=14,
and 
Therefore: 
From z table, P(X < 68.2) = P(z < 0.83) = 0.7967
P(X < 68.2) = 0.7967
c) P(X ≥ 65.6)
First me need to calculate the z score (z). This is given by the equation:
Therefore: 
From z table, P(X ≥ 65.6) = P(z ≥ 0.32) = 1 - P(z < 0.32) = 1 - 0.6255 = 0.3745
P(X ≥ 65.6) = 0.3745
P(X < 68.2) = 0.7967
Answer:
5n-28
Step-by-step explanation:
28-6n+7(2n-8)-3n
28-6n+14n-56-3n
28+8n-56-3n
28-56+8n-3n
-28+5n
5n-28