Answer:
We want to find:
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D)
Here we can use Stirling's approximation, which says that for large values of n, we get:

Because here we are taking the limit when n tends to infinity, we can use this approximation.
Then we get.
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n} = \lim_{n \to \infty} \frac{\sqrt[n]{\sqrt{2*\pi*n} *(\frac{n}{e} )^n} }{n} = \lim_{n \to \infty} \frac{n}{e*n} *\sqrt[2*n]{2*\pi*n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7B%5Csqrt%7B2%2A%5Cpi%2An%7D%20%2A%28%5Cfrac%7Bn%7D%7Be%7D%20%29%5En%7D%20%7D%7Bn%7D%20%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bn%7D%7Be%2An%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D)
Now we can just simplify this, so we get:
![\lim_{n \to \infty} \frac{1}{e} *\sqrt[2*n]{2*\pi*n} \\](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B1%7D%7Be%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D%20%5C%5C)
And we can rewrite it as:

The important part here is the exponent, as n tends to infinite, the exponent tends to zero.
Thus:

Answer:
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = 0.0087
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given that the mean of the Population = 95
Given that the standard deviation of the Population = 5
Let 'X' be the random variable in a normal distribution
Let X⁻ = 96.3
Given that the size 'n' = 84 monitors
<u><em>Step(ii):-</em></u>
<u><em>The Empirical rule</em></u>


Z = 2.383
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = P(Z≥2.383)
= 1- P( Z<2.383)
= 1-( 0.5 -+A(2.38))
= 0.5 - A(2.38)
= 0.5 -0.4913
= 0.0087
<u><em>Final answer:-</em></u>
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = 0.0087
Since 2 croissants = $3 we can work out that 1 croissant = $1.50
Multiply $1.50 by 31 and we get $46.50
Therefore 31 croissants is $46.50
Step-by-step explanation:
Xj + Xk/2 = Xm
7 + Xk/2 = 1
to get rid of the bracket, multiply all two sides by the denominator.
2(7 + Xk/2) = 1(2)
7 + Xk = 2
Xk = 2 - 7
Xk = -5
Yj + Yk/2 = Ym
2 + Yk/2 = -2
to get rid of the bracket, multiply all two sides by the denominator.
2(2 + Yk/2) = -2(2)
2 + Yk = -4
Yk = -4 - 2
Yk = -6
Therefore the coordinates of point K is (-5,-6)