The answer in itself is 1/128 and here is the procedure to prove it:
cos(A)*cos(60+A)*cos(60-A) = cos(A)*(cos²60 - sin²A)
<span>= cos(A)*{(1/4) - 1 + cos²A} = cos(A)*(cos²A - 3/4) </span>
<span>= (1/4){4cos^3(A) - 3cos(A)} = (1/4)*cos(3A) </span>
Now we group applying what we see above
<span>cos(12)*cos(48)*cos(72) = </span>
<span>=cos(12)*cos(60-12)*cos(60+12) = (1/4)cos(36) </span>
<span>Similarly, cos(24)*cos(36)*cos(84) = (1/4)cos(72) </span>
<span>Now the given expression is: </span>
<span>= (1/4)cos(36)*(1/4)*cos(72)*cos(60) = </span>
<span>= (1/16)*(1/2)*{(√5 + 1)/4}*{(√5 - 1)/4} [cos(60) = 1/2; </span>
<span>cos(36) = (√5 + 1)/4 and cos(72) = cos(90-18) = </span>
<span>= sin(18) = (√5 - 1)/4] </span>
<span>And we seimplify it and it goes: (1/512)*(5-1) = 1/128</span>
The effective rate of interest will be 9.10 %.
<h3>What is compound interest?</h3>
Compound interest is applicable when there will be a change in principle amount after the given time period.
Let's say you have given 100 for two years with a 10% rate of interest annually than for the second-year principle amount will become 110 instant of 100.
Given for simple interest
Principle amount = $650
Rate of interest = 12%
Time period = 7 months.
Interest= PRT/100
Interest= 650× 12 × 7/100 = 546
So final amount = 650 + 546 = $1196
By compound interest
1196 = 650![[1 + R/100]^{7}](https://tex.z-dn.net/?f=%5B1%20%2B%20R%2F100%5D%5E%7B7%7D)
R = 9.10%
Hence the effective rate of interest will be 9.10%.
For more information about compound interest,
brainly.com/question/26457073
#SPJ1
Answer: this is so easy you got this
Step-by-step explanation:
YOU WILL NEVER SUCCEED IF YOU DON’T TRY
search it up if you really need help
The value at the end of the year is 100% - 20% = 0.80 of the value at the beginning of the year. After 4 years of multiplying by this factor, the value is
$17,500·0.80⁴ = $7,168
what is the maximum, minimum, quartile 1, median, quartile 3, range, interquartlie range of these numbers " 46,48,50,52, and 54"
Gekata [30.6K]
Min=46
Max=54
1 quartile= 48
Median=50
3 quartile=52
46/48 percent is 95.83%