Multiplied: <span>3/5a
Simplified: Also ^ 3/5a</span>
Answer:
4^4
Step-by-step explanation:
Since there are four 4's, it is to the 4th power.
Answer: The answer is 314.28 cm² (approx.).
Step-by-step explanation: Given that an engineer is going to install a new water pipe. The diameter of this circular pipe is, d = 20 cm.
We need to find the area 'A' of the circular cross-section of the pipe.
Given, diameter of the circular section is

So, the radius of the circular cross-section will be

Therefore, cross-sectional area of the pipe is

Thus, the answer is 314.28 cm² (approx.).
Answer:
Step-by-step explanation:
y-y1 = m(x-x1)
y-4 = 2(x-3)
y-4=2x-6
y= 2x -6+4
y=2x-2
Answer:
Step-by-step explanation:
Directions
- Draw a circle
- Dear a chord with a length of 24 inside the circle. You just have to label it as 24
- Draw a radius that is perpendicular and a bisector through the chord
- Draw a radius that is from the center of the circle to one end of the chord.
- Label where the perpendicular radius to the chord intersect. Call it E.
- You should get something that looks like the diagram below. The only thing you have to do is put in the point E which is the midpoint of CB.
Givens
AC = 13 inches Given
CB = 24 inches Given
CE = 12 inches Construction and property of a midpoint.
So what we have now is a right triangle (ACE) with the right angle at E.
What we seek is AE
Formula
AC^2 = CE^2 + AE^2
13^2 = 12^2 + AE^2
169 = 144 + AE^2 Subtract 144 from both sides.
169 - 144 = 144-144 + AE^2 Combine
25 = AE^2 Take the square root of both sides
√25 = √AE^2
5 = AE
Answer
The 24 inch chord is 5 inches from the center of the circle.