1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artyom0805 [142]
3 years ago
13

Find the radius of a sphere whose volume is 12345mm

Mathematics
1 answer:
MrMuchimi3 years ago
6 0

Answer:

14.34mm

Step-by-step explanation:

The formula for the volume of a sphere = 4/3nr³

where

n = 22/7

r = radius

give the volume of the sphere, we can determine the radius

12345 = 4/3 x 22/7 x r³

12345 = 88/21 x r³

divide both sides by 21/88

r³ = 2945.965909

take the cube root of both sides

r = 14.34 mm

You might be interested in
Ally ran 5 miles in 6 minutes. Sami ran 6 mile. If ally ran at a faster rate than Sami ,in how many minutes could Sami have run
Veseljchak [2.6K]
Answer:6 minutes
(not really sure that is what i got)
8 0
3 years ago
Read 2 more answers
Can someone help me i cant understand with work
Masja [62]

Answer:

Right now it would be

-40

Since desend means down add -20 to -40

-40+(-20)=-60

         or

-40-20=-60

Then is goes up 35, which is positive

-60+35=-25

Therefore, the answer is -25

Hope this helps

Answer by

<em>Fishylikeswater</em>

<em></em>

3 0
3 years ago
Read 2 more answers
3 equivalent of expressions using distributive 300x + 100y
Musya8 [376]
Well you could do 5(60x+20y), 100(3x+y), and 2(150x+50y)
6 0
3 years ago
Read 2 more answers
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
190 = 200^b, make b the subject​
MArishka [77]

Answer:

b = \frac{ln190}{ln200}

Step-by-step explanation:

Using the rule of logarithms

log x^{n} ⇔ nlogx

Given

190 = 200^{b} ( take the natural log ln of both sides )

ln190 = ln200^{b} = bln200 ( divide both sides by ln200 )

\frac{ln190}{ln200} = b

3 0
3 years ago
Other questions:
  • 1. The county fair charges $1.25 per ticket for the rides. Jermaine bought 25 tickets for the rides and spent a total of $43.75
    15·2 answers
  • Evaluate the expression.<br> (6 − 3)!
    5·2 answers
  • to find the amount of space cube shaped bird cage occupies,find the cube of measure of one edge of the bird cage. express the am
    6·1 answer
  • Show your mastery of equivalent and simplifying fractions by using the sketchpad below to write the fraction
    11·1 answer
  • Jerry is saving money for a job. After the first 3 weeks he saved $135. Assuming the situation is proportional. Use the unit Rae
    7·1 answer
  • Solve the equation below x
    6·1 answer
  • (-1, 3) and (7, -1)Find the coordinates of the midpoint of the segment with the endpoints listed below.
    6·1 answer
  • Please help out !!!!
    10·1 answer
  • PLEASE HELP I GIVE BRAINLIEST​
    15·1 answer
  • 9(42) - 9(4) = 9(30) + 9 (___)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!