Answer:
12.4+3√7 is irrational
Step-by-step explanation:
12.4 is a rational number
3√7 is an irrational number
<u>The sum of a rational number and an irrational number is irrational.</u>
So, 12.4+3√7 is irrational
A
Step-by-step explanation:
First and foremost, we can rule out B and C because they are less than one and would make the hexagon smaller instead of bigger. Now, when we measure the units, we see that it goes up by 2 squares on the graph. So, by process of elimination and measurement, we get the answer of A.
Answer:
Assuming the question is: 3 + 1 16 [I see no "working below."
Step-by-step explanation:
3 + 1 16
48/16 + (16/16 + 1/16) [Make all numbers into fractions using 16 as the denominator. E.g. 48/16 = 3.
Add: 48/16 + (16/16 + 1/16)
(48+16+1)/16
=63/16
[Also equal to 3 15/16]
Answer:
The number of words that can be formed from the word "LITERATURE" is 453600
Step-by-step explanation:
Given
Word: LITERATURE
Required: Number of 10 letter word that can be formed
The number of letters in the word "LITERATURE" is 10
But some letters are repeated; These letters are T, E and R.
Each of the letters are repeated twice (2 times)
i.e.
Number of T = 2
Number of E = 2
Number of R = 2
To calculate the number of words that can be formed, the total number of possible arrangements will be divided by arrangement of each repeated character. This is done as follows;
Number of words that can be formed = 
Number of words = 
Number of words = 
Number of words = 453600
Hence, the number of words that can be formed from the word "LITERATURE" is 453600
Check the picture below.
now, let's keep in mind that, the vertex is half-way between the focus point and the directrix, it's a "p" distance from each other.
since this horizontal parabola is opening to the left-hand-side, "p" is negative, notice in the picture, "p" is 2 units, and since it's negative, p = -2.
its vertex is half-way between those two guys, so that puts the vertex at (-5, 3)
![\bf \textit{parabola vertex form with focus point distance} \\\\ \begin{array}{llll} 4p(x- h)=(y- k)^2 \\\\ 4p(y- k)=(x- h)^2 \end{array} \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=-5\\ k=7\\ p=-2 \end{cases}\implies 4(-2)[x-(-5)]=[y-7]^2 \\\\\\ -8(x+5)=(y-7)^2\implies x+5=\cfrac{(y-7)^2}{-8}\implies \boxed{x=-\cfrac{1}{8}(y-7)^2-5}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5C%5C%5C%5C%204p%28y-%20k%29%3D%28x-%20h%29%5E2%20%5Cend%7Barray%7D%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20vertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D-5%5C%5C%20k%3D7%5C%5C%20p%3D-2%20%5Cend%7Bcases%7D%5Cimplies%204%28-2%29%5Bx-%28-5%29%5D%3D%5By-7%5D%5E2%20%5C%5C%5C%5C%5C%5C%20-8%28x%2B5%29%3D%28y-7%29%5E2%5Cimplies%20x%2B5%3D%5Ccfrac%7B%28y-7%29%5E2%7D%7B-8%7D%5Cimplies%20%5Cboxed%7Bx%3D-%5Ccfrac%7B1%7D%7B8%7D%28y-7%29%5E2-5%7D)