We have that
case 1) 2x3 + 4x -----------> <span>C. cubic binomial
</span>The degree of the polynomial is 3----> <span>the greater exponent is elevated to 3
</span>the number of terms is 2
<span>
case 2) </span>3x 5 + 3x 4 + x 3--------> <span>A. Quintic trinomial
</span>The degree of the polynomial is 5----> the greater exponent is elevated to 5
the number of terms is 3
<span>
case 3) </span>x 2 + 3----------> <span>B. quadratic binomial
</span>The degree of the polynomial is 2----> the greater exponent is elevated to 2
the number of terms is 2
<span>
case 4) </span>2x 2 + x − 5 A------------> D. quadratic trinomial
The degree of the polynomial is 2----> the greater exponent is elevated to 2
the number of terms is 3
Answer:
9÷x is the correct answer
Not sure I'm right but:
If the bar weighs 9.25 ounces and 65% of the bar is gold, you'd do 65% of 9.25. So the answer would be <span>65% of 9.25= 6.0125</span>
Answer:
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
Step-by-step explanation:
Let A represent snickers, B represent Twix and C represent Reese's Peanut Butter Cups.
Given;
N(A) = 150
N(B) = 204
N(C) = 206
N(A∩B) = 75
N(A∩C) = 100
N(B∩C) = 98
N(A∩B∩C) = 38
N(Total) = 500
How many students like Reese's Peanut Butter Cups or Snickers, but not Twix;
N(AUC∩B')
This can be derived by first finding;
N(AUC) = N(A) + N(C) - N(A∩C)
N(AUC) = 150+206-100 = 256
Also,
N(A∩B U B∩C) = N(A∩B) + N(B∩C) - N(A∩B∩C) = 75 + 98 - 38 = 135
N(AUC∩B') = N(AUC) - N(A∩B U B∩C) = 256-135 = 121
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
See attached venn diagram for clarity.
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is the shaded part
Answer:
The school took in $52 on there second day by selling 3 senior citizen tickets and 2 child tickets. Find the price of a senior citizen
Step-by-step explanation: