Here,
The midpoint of segment QR is M
<u>m</u><u>(</u><u>-2</u><u>,</u><u>9</u><u>)</u> x3=-2,y3=9
<u>Q</u><u>=</u><u>(</u><u>-8</u><u>,</u><u>1</u><u>2</u><u>)</u>x1=-8,y1=12
R=x2,y2
we know that,
⠀
So,
x3=
⠀
⠀
⠀
⠀
⠀
x2=4
now we find the y coordinate y2.
y3=
⠀
⠀
⠀
⠀
⠀
y2=6
<em>Now</em><em> </em><em>we</em><em> </em><em>get</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>coordinate</em><em> </em><em>of</em><em> </em><em>R</em>
<em>so</em><em>,</em>
R=(x2,y2)=(4,6)
First you wanna distribute the 3 to x and 4
So the problem will then be 3x+12= 27
Then you wanna subtract 12 from 27
You get 3x = 15
Now you wanna divide 3x and 15 by 3
You then get X = 5