Answer: The required solution is 
Step-by-step explanation:
We are given to solve the following differential equation :

where k is a constant and the equation satisfies the conditions y(0) = 50, y(5) = 100.
From equation (i), we have

Integrating both sides, we get
![\int\dfrac{dy}{y}=\int kdt\\\\\Rightarrow \log y=kt+c~~~~~~[\textup{c is a constant of integration}]\\\\\Rightarrow y=e^{kt+c}\\\\\Rightarrow y=ae^{kt}~~~~[\textup{where }a=e^c\textup{ is another constant}]](https://tex.z-dn.net/?f=%5Cint%5Cdfrac%7Bdy%7D%7By%7D%3D%5Cint%20kdt%5C%5C%5C%5C%5CRightarrow%20%5Clog%20y%3Dkt%2Bc~~~~~~%5B%5Ctextup%7Bc%20is%20a%20constant%20of%20integration%7D%5D%5C%5C%5C%5C%5CRightarrow%20y%3De%5E%7Bkt%2Bc%7D%5C%5C%5C%5C%5CRightarrow%20y%3Dae%5E%7Bkt%7D~~~~%5B%5Ctextup%7Bwhere%20%7Da%3De%5Ec%5Ctextup%7B%20is%20another%20constant%7D%5D)
Also, the conditions are

and

Thus, the required solution is 
Answer:
0.5 + 0.5, 0 + 1, 0.6 + 0.4, etc etc
Step-by-step explanation:
Answer:
They drove 150 miles on the third day
They drove 50 miles per hour so if you multiply that by 3 (since they drove 3 hours on the third day) you would get 150 miles.
Answer:
Answer: =2a + 16
Step-by-step explanation:
8+9−1+2a =8+9+−1+2a
now its time to to do CLT
=8+9+−1+2a
=(2a)+(8+9+−1)
=2a+16
Answer:

Step-by-step explanation:
y = 3 fruit trees
x = 7 nut trees
Constant of proportionality = k
k = y/x
k = 3/7
f = 3/7n