Answer:
40% of the boys ate grapes :)
Thank you
Answer:
Step-by-step explanation:
The principal, real, root of:

= 0.164316767
All roots:
0.164316767
−0.164316767
0.027 is not a perfect square
Answer:
Domain: {−2, −1, 0, 2} Range: {−4, −2, 2}
Step-by-step explanation:
We have been given a mapping diagram as shown below:
X Y
-2 -4
-1 -2
0 2
2
For better view, you can check the attached mapping diagram.
From that diagram we have to find domain and range.
Domain contains only x values so domain will be:
Domain: {-2,-1,0,2}
Range contains only y values so range will be:
Range: {-4,-2,2}
We see that only third choice matches obtained values of domain and range.
Hence final answer is Domain: {−2, −1, 0, 2} Range: {−4, −2, 2}
Answer:
![\displaystyle\frac{\sqrt[4]{3x^2}}{2y}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cfrac%7B%5Csqrt%5B4%5D%7B3x%5E2%7D%7D%7B2y%7D)
Step-by-step explanation:
It can work well to identify 4th powers under the radical, then remove them.
![\displaystyle\sqrt[4]{\frac{24x^6y}{128x^4y^5}}=\sqrt[4]{\frac{3x^2}{16y^4}}=\sqrt[4]{\frac{3x^2}{(2y)^4}}\\\\=\frac{\sqrt[4]{3x^2}}{2y}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csqrt%5B4%5D%7B%5Cfrac%7B24x%5E6y%7D%7B128x%5E4y%5E5%7D%7D%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B3x%5E2%7D%7B16y%5E4%7D%7D%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B3x%5E2%7D%7B%282y%29%5E4%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5Csqrt%5B4%5D%7B3x%5E2%7D%7D%7B2y%7D)
_____
The applicable rules of exponents are ...
1/a^b = a^-b
(a^b)(a^c) = a^(b+c)
The x-factors simplify as ...
x^6/x^4 = x^(6-4) = x^2
The y-factors simplify as ...
y/y^5 = 1/y^(5-1) = 1/y^4
The constant factors simplify in the usual way:
24/128 = (8·3)/(8·16) = 3/16
Answer:for ax^2+bx+c=0 the discriminant is b^2-4ac
there are 3 basic cases of what happens for different discriminants
1. if the discriminant is less than 0, then there are no real zeroes
2. if the discriminant is 0, then it has 1 zero
3. if the discriminant is greater than 0, it has 2 zeroes
so given
0=3x^2-7x+4
a=3,b=-7,c=4
thus the discriminant is (-7)^2-4(3)(4)=49-48=1
the discriminant is 1. 1 is positive, thus the equation has 2 zeroes because the discriminant is greater than 0
the answer is the equation has two zeroes because the discriminant is greater than 0
Step-by-step explanation: