M(C2H2O)= 12.0*2 +1.0*2 +16.0 = 42 g/mol is a molar mass for empirical formula.
120.6g/mol/42g/mol ≈ 3
So, empirical formula should be increased 3 times,
and molecular formula is C6H6O3.
Answer is D.
Answer:
1.64g
Explanation:
The reaction scheme is given as;
2-bromocyclohexanol --> 1,2-epoxycyclohexane + HBr
From the reaction above,
1 mol of 2-bromocyclohexanol produces 1 mol of 1,2-epoxycyclohexane
3.0 grams of trans-2-bromocyclohexanol.
Molar mass = 179.05 g/mol
Number of moles = mass / molar mass = 3 / 179.05 = 0.016755 mol
This means 0.016755 mol of 1,2-epoxycyclohexane would be produced.
Molar mass = 98.143 g/mol
Theoretical yield = Number of moles * Molar mass
Theoretical yield = 0.016755 * 98.143 ≈ 1.64g
The volume of the gas at STP = 35.01 L
<h3>Further explanation</h3>
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure).
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
V=17.4 L
T = 23 + 273 = 296 K
P = 2.18 atm

The volume of the gas occupy at STP :

Answer:
Combustion reaction
General Formulas and Concepts:
<u>Chemistry</u>
- Synthesis Reactions: A + B → AB
- Decomposition Reactions: AB → A + B
- Single-Replacement Reactions: A + BC → AB + C
- Double-Replacement Reactions: AB + CD → AD + BC
Explanation:
<u>Step 1: Define</u>
2C₂H₂ + 5O₂ → 2H₂O + 4CO₂
<u>Step 2: Identify</u>
Any organic molecule reacting with oxygen to produce water and carbon dioxide is a combustion reaction.
We also see from the RxN that is is a double replacement reaction.