NaPO4 + KOH -> KPO4 + NaOH
already balance
Answer: The beaker will not tip over when placed on the hot plate
Justification:
Since beakers have flat surface bottoms (usually and this is the condition to use them for this particular application) they can be placed safely on the hot plate without the risk that the they tip over.
Beakers are wide mouth cylindrical vessels used in laboratories to store, mix and heat liquids. Most are made of glass, in which case the glass is resistant to the flame and does not break when exposed to high temperatures or when is heated by direct contact on a hot plate.
So, their safe shape (flat bottom) that makes them stable, along with their ability to withstand high temperatures, make them suitable to heat solutions in laboratories.
Beryllium, magnesium, strontium, barium, or radium. Hope this helped :))
Using the ideal gas law equation, we can find the number of H₂ moles produced.
PV = nRT
Where P - pressure - 0.811 atm x 101 325 Pa/atm = 82 175 Pa
V - volume - 58.0 x 10⁻³ m³
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 32 °C + 273 = 305 K
substituting these values in the equation,
82 175 Pa x 58.0 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 305 K
n = 1.88 mol
The balanced equation for the reaction is as follows;
CaH₂(s) + 2H₂O(l) --> Ca(OH)₂(aq) + 2H₂(g)
stoichiometry of CaH₂ to H₂ is 1:2
When 1.88 mol of H₂ is formed , number of CaH₂ moles reacted = 1.88/2 mol
therefore number of CaH₂ moles reacted = 0.94 mol
Mass of CaH₂ reacted - 0.94 mol x 42 g/mol = 39.48 g of CaH₂ are needed