1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
2 years ago
12

3+\sqrt{-7})" alt="(4+\sqrt{-7}) (3+\sqrt{-7})" align="absmiddle" class="latex-formula">
Mathematics
2 answers:
ivann1987 [24]2 years ago
8 0
The answer is 5+7i√7
lozanna [386]2 years ago
6 0
HMMMMMMMMMM LET ME WORK IT OUT FOR U
You might be interested in
Kristen lives directly east of the park. The football field is directly south of the park. The library sits on the line formed b
guajiro [1.7K]
With that information you can determine how far the park is from the football field.

Call h the height of the triangle, x the distance from the park to the football field and y the distance from the park to the home of Kristen.

Using Pithagora's theorem, ou can state this system of equations:

1) From the complet triangle: x^2 + y^2 = (8 + 2)^2 = 10^2 = 100

2) From the triangle whose hypotenuse is the distance from the park to the football field:

x^2 = 8^2 + h^2

3) From the triangle whose hypotenuse is the distance from the park to the home of Kristen:

y^2 = 2^2 + h^2

To solve the system start by subtracting equation 3) from equation 1) =>

x^2 + y^2 = 100
y^2 = 4 + h^2
---------------------
x^2 = 100 - 4 - h^2

x^2 = 96 - h^2

Now sum this result to equation 2

x^2 = 96 - h^2
x^2 = 64 + h^2
---------------------
2x^2 = 96 + 64

2x^2 = 160

=> x^2 = 80

=> x = 8.94

Answer: 8.94 miles
6 0
3 years ago
Please help I don’t understand
julia-pushkina [17]
The answer is 32.14
3 0
2 years ago
Asking costs 5 points and then choosing a best answer earns you 3 points!
yKpoI14uk [10]
Thanks this came in handy bc I'm a beginner
4 0
3 years ago
Find an equation that models the path of a satellite if its path is a hyperbola, a = 55,000 km, and c= 81,000 km. Assume the cen
elena-14-01-66 [18.8K]

Answer:

\frac{x^2}{55000^2} - \frac{y^2}{59464^2} =1

Step-by-step explanation:

the transverse axis is horizontal.

so its a horizontal hyperbola

Center is the origin so center is (0,0)

Equation of horizontal hyperbola is

\frac{x^2}{a^2} - \frac{y^2}{b^2} =1

Given a= 55000 and c= 81000

c^2 = a^2 + b^2

81000^2 = 55000^2 + b^2

subtract 55000^2 on both sides

b  = sqrt(81000^2 - 55000^2)= 59464.27

now plug in the values

\frac{x^2}{55000^2} - \frac{y^2}{59464^2} =1

7 0
3 years ago
__________ reasoning is a type of reasoning that uses previously proven or accepted properties to reach conclusions.
Alekssandra [29.7K]
Deductive reasoning is your answer 
5 0
3 years ago
Other questions:
  • Find tje prime factorazation 79
    8·1 answer
  • Use slopes to determine if the lines 6x + 9y = 2 and 9x + 6y = -3 are perpendicular.
    5·1 answer
  • The table shows the annual increase in cost in t years for certain grocery items. Based on the formula A = C(1 + r)t, which equa
    8·2 answers
  • What is the distance between 1240 feet above sea level and 620 feet below sea level
    13·1 answer
  • Help me my good people
    13·1 answer
  • Nickitta can run 1/10 of a mile per minute. How many minutes will it take Isa to run 3 miles?
    7·1 answer
  • What is the slope through the points<br> (1,-3) and (2,1)
    9·1 answer
  • I really need helppppp
    5·1 answer
  • Use synthetic division to solve (4x3-3x2+5x+6)/(x+6). What is the quotient?
    8·2 answers
  • Can someone please help with my math :I !!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!