1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allushta [10]
3 years ago
14

A Triangular Park ABC has sides 120 m, 80m and 50m. a gardener has to put a fence all around it and also plant grass inside. How

much area does she need to plant? Find the cost of fencing it with barbed wire at the rate of of Rs. 20 per metre leaving a space 3m wide for a gate on one side?​
Mathematics
2 answers:
Vadim26 [7]3 years ago
7 0

The perimeter = sum of all sides

= 120 + 80 + 50

= 250

So 250 - 3

247

Left space for gate

Now cost of fencing = Rs 20/per meter

= 247 × 20

= Rs 4,940

Now the area of the triangular park can be found using heron's formula

S = (a+b+c)/2

S = (120+80+50)/2

S = 250/2

S = 125

Now

Herons formula = √s(s-a)(s-b)(s-c)

√125(125-120)(125-80)(120-50)

√125(5)(45)(70)

√5×5×5×5×5×3×3×5×14

After Making pairs

5×5×5×3√14

375√14

Therefore 375√14m is the area of the triangular park

Must click thanks and mark brainliest

labwork [276]3 years ago
4 0

$\sf\underline\bold{Answer:}$

  • $\sf\small\underline{\underline{Area\: planted\: by\: the\: gardener : 1452.36m^2}}$

  • $\sf\small\underline{\underline{The\:cost\:of\:fencing\:the\:park:Rs.4940}}$

$\space$

$\sf\underline\bold{Step-by-Step:}$

$\space$

$\sf\bold{Given(In \:the\:Q):}$

  • Sides of the triangular park are 120m,80m and 50m.

$\space$

$\sf\bold{To \: find:}$

  • How much area of the park does she need to plant?
  • The cost of fencing the park ?

$\space$

$\sf\small{☆Area\:to\:be\:planted=Area \: of \: ∆ABC}$

$\space$

$\sf\underline\bold{Calculating\:area\:of\:∆ABC:}$

$\space$

Use heron's formula to find the area of the triangle.

$\space$

$\mapsto$ $\sf\small{Heron's\:formula=}$

\sf\sqrt{s(s-a)(s-b)(s-c)}

  • $\sf{Where\:s=semi\:perimeter}$
  • $\sf{a,b,c\: = side\:of\:the\:∆}$
  • $\sf\small{Here\:a=120,b=80 \:and\: c=50}$

$\space$

$\sf\bold{Now,find\:semi\:parameter:-}$

$\sf\small{Perimeter\:of\:the\:∆=120+80+50=250}$

$\sf\small{Semi-Perimeter:}$ $\sf\dfrac{250}{2}$ $\sf\small{=125m}$

$\space$

$\sf\small{Substitute \: the\:values\:in\:heron's\:formula:}$

$\sf{Area\:of\:the\:∆:-}$

$\mapsto$ \sf\sqrt{125(125-120)(125-80)(125-50)}

$\space$

$\mapsto$ $\sf\sqrt{125\times(5)\times(45)\times(75)}$

$\space$

$\mapsto$ $\sf\small\sqrt{2109375}$ $\sf\small{=375}$ $\sf\small\sqrt{15}$

$\space$

$\longmapsto$ $\sf\underline\bold\purple{1452.56m^2}$

______________________________

$\sf\underline\bold{Now,find\:the\:cost\:of\:fencing:}$

$\sf{Cost\:of\:fencing-}$

  • $\sf{Rate = Rs.20 per \:meter}$
  • $\sf{Left\:space=3m}$

$\space$

$\sf\underline{Hence,the\:gardener\:has\:to\:fence:}$

  • $\sf{= 250-3=247m.}$

$\space$

<u>So</u><u>,</u><u>total</u><u> </u><u>cost</u><u> </u><u>of</u><u> </u><u>fencing</u><u> </u><u>at</u><u> </u><u>the</u><u> </u><u>rate</u><u> </u><u>of</u><u> </u><u>Rs</u><u>.</u><u>2</u><u>0</u><u> </u><u>per</u><u> </u><u>m</u><u>:</u><u>-</u>

  • $\sf\underline\bold\purple{=247\times20=4940}$

___________________________________

You might be interested in
A hockey team is convinced that the coin used to determine the order of play is weighted. The team captain steals this special c
fredd [130]

Answer:

Since x= 12 (0.006461) does not fall in the critical region so we accept our null hypothesis and conclude that the coin is fair.

Step-by-step explanation:

Let p be the probability of heads in a single toss of the coin. Then our null hypothesis that the coin is fair will be formulated as

H0 :p 0.5   against   Ha: p ≠ 0.5

The significance level is approximately 0.05

The test statistic to be used is number of heads x.

Critical Region: First we compute the probabilities associated with X the number of heads using the binomial distribution

Heads (x)        Probability (X=x)                        Cumulative     Decumulative

0                        1/16384 (1)             0.000061     0.000061

1                         1/16384  (14)         0.00085             0.000911

2                       1/16384 (91)           0.00555             0.006461

3                       1/16384(364)         0.02222

4                       1/16384(1001)         0.0611

5                       1/16384(2002)       0.122188

6                        1/16384(3003)      0.1833

7                         1/16384(3432)      0.2095

8                        1/16384(3003)       0.1833

9                        1/16384(2002)       0.122188

10                       1/16384(1001)        0.0611

11                       1/16384(364)        0.02222

12                      1/16384(91)            0.00555                             0.006461

13                     1/16384(14)              0.00085                           0.000911

14                       1/16384(1)            0.000061                            0.000061

We use the cumulative and decumulative column as the critical region is composed of two portions of area ( probability) one in each tail of the distribution. If  alpha = 0.05 then alpha by 2 - 0.025 ( area in each tail).

We observe that P (X≤2) =   0.006461 > 0.025

and

P ( X≥12 ) = 0.006461 > 0.025

Therefore true significance level is

∝=  P (X≤0)+P ( X≥14 ) = 0.000061+0.000061= 0.000122

Hence critical region is (X≤0) and ( X≥14)

Computation x= 12

Since x= 12 (0.006461) does not fall in the critical region so we accept our null hypothesis and conclude that the coin is fair.

3 0
3 years ago
What’s the area of the above figure which has sides of length 6 And 8
Nastasia [14]

Answer:ill have to see

Step-by-step explanation:

6 0
3 years ago
Count the left handed and right handed spirals on the cacti in the photograph you should get two consecutive terms of the Fibona
lana [24]
You can count the spirals because they are coloured.

The left handed spirals are in red and you can count 13.

The rifht hanged spirals are in yellow and you can count 21.

Fibonacci sequence is: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... From 2 the next number is the sum of the two previous numbers:

2 = 1 + 1

3 = 2 + 1

5 = 3 + 2

8 = 5 + 3

13 = 8 + 5

21 = 13 + 8.

Fibonacci numbers are found in many structures in nature.

We have just found that these cacti enclose Fibonacci numbers 13 and 21.

Answer: 13 and 21
8 0
3 years ago
You are ordering lunch for everyone in your office from a small restaurant nearby. The following shows the menu items available.
Kipish [7]

What is the actual question? I know what you're trying to say, just it's not enough info...

6 0
3 years ago
Read 2 more answers
Find the slope of the line passing through the points (-5,3) and (-5,-7)
padilas [110]

Answer:

The slope is Undefined.

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Sarah bought a lawnmower for $320. She signed up for the buy now pay later plan at the store with the following conditions: $100
    15·1 answer
  • Which is equivalent to (4xy – 3z)2, and what type of special product is it?
    13·2 answers
  • Mrs. Carrera had a coupon for 20% off one item at Best Buy. She bought a 42" flat-screen TV and saved $135. What was the regular
    8·1 answer
  • Every small business must register with the secretary of state in their home state,
    15·1 answer
  • Solve for x.<br> 3(3x - 1) + 23 - x) = 0
    7·1 answer
  • A How does matter change from one state to another?
    8·1 answer
  • Which do the following equations represent? -4x-5y=-4 and 10x-8y=-1
    15·1 answer
  • IM GIVING 20 POINTS AND BRAINLY TO WHO GETS IT RIGHT THIS IS DUE REALLY SOON AND I NEED HELP PLSSSS​
    15·2 answers
  • If m YXW=18°, YW=6, and WZ=6, what is ZXY?
    12·1 answer
  • Please help, I'm so bad at math
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!