$\sf\underline\bold{Answer:}$
- $\sf\small\underline{\underline{Area\: planted\: by\: the\: gardener : 1452.36m^2}}$
- $\sf\small\underline{\underline{The\:cost\:of\:fencing\:the\:park:Rs.4940}}$
$\space$
$\sf\underline\bold{Step-by-Step:}$
$\space$
$\sf\bold{Given(In \:the\:Q):}$
- Sides of the triangular park are 120m,80m and 50m.
$\space$
$\sf\bold{To \: find:}$
- How much area of the park does she need to plant?
- The cost of fencing the park ?
$\space$
$\sf\small{☆Area\:to\:be\:planted=Area \: of \: ∆ABC}$
$\space$
$\sf\underline\bold{Calculating\:area\:of\:∆ABC:}$
$\space$
Use heron's formula to find the area of the triangle.
$\space$
$\mapsto$ $\sf\small{Heron's\:formula=}$
- $\sf{Where\:s=semi\:perimeter}$
- $\sf{a,b,c\: = side\:of\:the\:∆}$
- $\sf\small{Here\:a=120,b=80 \:and\: c=50}$
$\space$
$\sf\bold{Now,find\:semi\:parameter:-}$
$\sf\small{Perimeter\:of\:the\:∆=120+80+50=250}$
$\sf\small{Semi-Perimeter:}$ $\sf\dfrac{250}{2}$ $\sf\small{=125m}$
$\space$
$\sf\small{Substitute \: the\:values\:in\:heron's\:formula:}$
$\sf{Area\:of\:the\:∆:-}$
$\mapsto$
$\space$
$\mapsto$ $\sf\sqrt{125\times(5)\times(45)\times(75)}$
$\space$
$\mapsto$ $\sf\small\sqrt{2109375}$ $\sf\small{=375}$ $\sf\small\sqrt{15}$
$\space$
$\longmapsto$ $\sf\underline\bold\purple{1452.56m^2}$
______________________________
$\sf\underline\bold{Now,find\:the\:cost\:of\:fencing:}$
$\sf{Cost\:of\:fencing-}$
- $\sf{Rate = Rs.20 per \:meter}$
- $\sf{Left\:space=3m}$
$\space$
$\sf\underline{Hence,the\:gardener\:has\:to\:fence:}$
$\space$
<u>So</u><u>,</u><u>total</u><u> </u><u>cost</u><u> </u><u>of</u><u> </u><u>fencing</u><u> </u><u>at</u><u> </u><u>the</u><u> </u><u>rate</u><u> </u><u>of</u><u> </u><u>Rs</u><u>.</u><u>2</u><u>0</u><u> </u><u>per</u><u> </u><u>m</u><u>:</u><u>-</u>
- $\sf\underline\bold\purple{=247\times20=4940}$
___________________________________