1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allushta [10]
3 years ago
14

A Triangular Park ABC has sides 120 m, 80m and 50m. a gardener has to put a fence all around it and also plant grass inside. How

much area does she need to plant? Find the cost of fencing it with barbed wire at the rate of of Rs. 20 per metre leaving a space 3m wide for a gate on one side?​
Mathematics
2 answers:
Vadim26 [7]3 years ago
7 0

The perimeter = sum of all sides

= 120 + 80 + 50

= 250

So 250 - 3

247

Left space for gate

Now cost of fencing = Rs 20/per meter

= 247 × 20

= Rs 4,940

Now the area of the triangular park can be found using heron's formula

S = (a+b+c)/2

S = (120+80+50)/2

S = 250/2

S = 125

Now

Herons formula = √s(s-a)(s-b)(s-c)

√125(125-120)(125-80)(120-50)

√125(5)(45)(70)

√5×5×5×5×5×3×3×5×14

After Making pairs

5×5×5×3√14

375√14

Therefore 375√14m is the area of the triangular park

Must click thanks and mark brainliest

labwork [276]3 years ago
4 0

$\sf\underline\bold{Answer:}$

  • $\sf\small\underline{\underline{Area\: planted\: by\: the\: gardener : 1452.36m^2}}$

  • $\sf\small\underline{\underline{The\:cost\:of\:fencing\:the\:park:Rs.4940}}$

$\space$

$\sf\underline\bold{Step-by-Step:}$

$\space$

$\sf\bold{Given(In \:the\:Q):}$

  • Sides of the triangular park are 120m,80m and 50m.

$\space$

$\sf\bold{To \: find:}$

  • How much area of the park does she need to plant?
  • The cost of fencing the park ?

$\space$

$\sf\small{☆Area\:to\:be\:planted=Area \: of \: ∆ABC}$

$\space$

$\sf\underline\bold{Calculating\:area\:of\:∆ABC:}$

$\space$

Use heron's formula to find the area of the triangle.

$\space$

$\mapsto$ $\sf\small{Heron's\:formula=}$

\sf\sqrt{s(s-a)(s-b)(s-c)}

  • $\sf{Where\:s=semi\:perimeter}$
  • $\sf{a,b,c\: = side\:of\:the\:∆}$
  • $\sf\small{Here\:a=120,b=80 \:and\: c=50}$

$\space$

$\sf\bold{Now,find\:semi\:parameter:-}$

$\sf\small{Perimeter\:of\:the\:∆=120+80+50=250}$

$\sf\small{Semi-Perimeter:}$ $\sf\dfrac{250}{2}$ $\sf\small{=125m}$

$\space$

$\sf\small{Substitute \: the\:values\:in\:heron's\:formula:}$

$\sf{Area\:of\:the\:∆:-}$

$\mapsto$ \sf\sqrt{125(125-120)(125-80)(125-50)}

$\space$

$\mapsto$ $\sf\sqrt{125\times(5)\times(45)\times(75)}$

$\space$

$\mapsto$ $\sf\small\sqrt{2109375}$ $\sf\small{=375}$ $\sf\small\sqrt{15}$

$\space$

$\longmapsto$ $\sf\underline\bold\purple{1452.56m^2}$

______________________________

$\sf\underline\bold{Now,find\:the\:cost\:of\:fencing:}$

$\sf{Cost\:of\:fencing-}$

  • $\sf{Rate = Rs.20 per \:meter}$
  • $\sf{Left\:space=3m}$

$\space$

$\sf\underline{Hence,the\:gardener\:has\:to\:fence:}$

  • $\sf{= 250-3=247m.}$

$\space$

<u>So</u><u>,</u><u>total</u><u> </u><u>cost</u><u> </u><u>of</u><u> </u><u>fencing</u><u> </u><u>at</u><u> </u><u>the</u><u> </u><u>rate</u><u> </u><u>of</u><u> </u><u>Rs</u><u>.</u><u>2</u><u>0</u><u> </u><u>per</u><u> </u><u>m</u><u>:</u><u>-</u>

  • $\sf\underline\bold\purple{=247\times20=4940}$

___________________________________

You might be interested in
A sequence is defined by the formula f(n + 1) = f(n) – 3. If f(4) = 22, what is f(1)?
julsineya [31]

f(n) = f(n+1) +3

f(1) = f(2) +3

f(2) =f(3) +3

f(3) = f(4) +3

So f(1) = f(n) + 3* (n-1)

Put n=4 here so you found

f(1) = f(4) + 3* 3

= 22 +9

=31 ans




                             hope it helps

5 0
3 years ago
Read 2 more answers
Simplify.
alekssr [168]

Answer: Answer #1

Step-by-step explanation: −3.3m+9.2n−4.2  Brainliest please?

6 0
3 years ago
5
postnew [5]

Answer:

(2)

Step-by-step explanation:

slope:-1/2

y-intercept:1   (because the function passes (0,1))

3 0
2 years ago
What is the value of x + 3y + z if x = 4, y = 5, and z= 22<br>a) 16<br>b) 41<br>c) 2​
fgiga [73]

Answer:

OPTION B - 41

Step-by-step explanation:

An expression is given and the corresponding values for the expression are also given. We have to substitute the given values to arrive at the answer.

The given expression is:   x + 3y + z.

Also given: x = 4, y = 5, z = 22.

Substitute these values in the above expression, we get:

4 + 3(5) + 22 = 4 + 15 + 22 = 41.

∴                                       x + 3y + z = 41

3 0
2 years ago
Does anyone know this?
EleoNora [17]

Answer:

The most logical answer is D

Step-by-step explanation:


6 0
2 years ago
Other questions:
  • A solid lies between planes perpendicular to the x-axis at x=0 and x=19. The cross sections perpendicular to the x-axis on the i
    6·1 answer
  • Simplify the ratio 9/12
    14·2 answers
  • What would be the answer to this question?
    15·1 answer
  • If a postal worker can deliver the mail to 18 houses in 15 minutes, how many houses will the postal worker be able to deliver to
    9·2 answers
  • Substract 8 from 6 times m
    15·2 answers
  • Please check my answer: Find the equation of the line that has a slope of -8 and a y-intercept of 2. Answer 4x+y-5
    13·1 answer
  • -6k + 7k what's the answer
    13·2 answers
  • If 10 cakes cost $30 then, what would be the cost of 25 cakes? Please help
    6·2 answers
  • If f(x)=1/9x-2, what is f^-1(x)?​
    9·1 answer
  • If x = 2y = 3 <br>find xy-y+ x × x ​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!