Answer:

Explanation:
Given a material with temperature coefficient of resistance <em>c</em>, the equation that relates the resistance
at temperature
and the resistance
at temperature
is

We want to double our resistance, so
, thus having:

For this T must be:


which for our values means (with
, remember to write temperature in S.I., and that for silver
):

Answer:
5080.86m
Explanation:
We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:


We must consider that it's launched from the ground (
) and from rest (
), with an upwards acceleration
that lasts a time t=9.7s.
We calculate then the height achieved in part 1:

And the velocity achieved in part 1:

We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 (
) and its initial velocity is the one achieved in part 1 (
), now in free fall, which means with a downwards acceleration
. For the data we have it's faster to use the formula
, where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:

Then, to get
, we do:



And we substitute the values:

Displacement is a vector magnitude that depends on the position of the body which is individualistic for the trajectory.
While, Distance is a scalar magnitude that measures over the trajectory.
Answer:
The heavier the load in a cart, the harder the cart is to turn.
Answer:
diameter of largest orbit is 0.60 m
Explanation:
given data
isotopes accelerates KE = 6.5 MeV
magnetic field B = 1.2 T
to find out
diameter
solution
first we find velocity from kinetic energy equation
KE = 1/2 × m×v² ........1
6.5 × 1.6 ×
= 1/2 × 1.672 ×
×v²
v = 3.5 ×
m/s
so
radius will be
radius =
........2
radius =
radius = 0.30
so diameter = 2 × 0.30
so diameter of largest orbit is 0.60 m