Given a coordinate point (x, y), the first value of the point represents the value on the x-axis while the second value represent the value on the y-axis.
1.) To express the values (-4, -1), (-1, 2), (1, -4), (2, -3), (4, 3) as a table, we have:
x y -4 -1 -1 2 1 -4 2 -3 4 3
The values (-4, -1), (-1, 2), (1, -4), (2, -3), (4, 3) expressed as a graph have been attached as graph_1
To express the values (-4, -1), (-1, 2), (1, -4), (2, -3), (4, 3) as a mapping, we have two circles with one labelled x and the other one labelled y. Inside the circle labelled x are the numbers -4, -1, 1, 2, 4 written vertically and inside the circle labelled y are the numbers -4, -3, -1, 2, 3 written vertically. There are lines joining from the circle labelled x to the circle labelled y with line joining -4 in circle x to -1 in circle y, -1 in circle x to 2 in circle y, 1 in circle x to -4 in circle y, 2 in circle x to -3 in circle y, 4 in circle x to 3 in circle y.
The domain of the relation is the set of the x-values of the relation, i.e. domain is {-4, -1, 1, 2, 4}. The range of the relation is the set of the y-values of the relation, i.e. range is {-4, -3, -1, 2, 3}
2.) To express the values (-2, 1), (-1, 0), (1, 2), (2, -4), (4, 3) as a table, we have:
x y -2 1 -1 0 1 2 2 -4 4 3
The values (-2, 1), (-1, 0), (1, 2), (2, -4), (4, 3) expressed as a graph have been attached as graph_2
To express the values (-2, 1), (-1, 0), (1, 2), (2, -4), (4, 3) as a mapping, we have two circles with one labelled x and the other one labelled y. Inside
the circle labelled x are the numbers -2, -1, 1, 2, 4 written
vertically and inside the circle labelled y are the numbers -4, 0, 1, 2, 3 written vertically. There are lines joining from the circle labelled x to the circle labelled y with a line joining -2 in circle x to 1 in circle y, -1 in circle x to 0 in circle y, 1 in circle x to 2 in circle y, 2 in circle x to -4 in circle y, 4 in circle x to 3 in circle y.
The domain of the relation is the set of the x-values of the relation, i.e. domain is {-2, -1, 1, 2, 4}. The range of the relation is the set of the y-values of the relation, i.e. range is {-4, 0, 1, 2, 3}
When you multiply two numbers which have the same sign the answer is positive. Therefore multiply eight and three to get 24 and the answer is positive; therefor the answers 24.
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean and standard deviation , the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean and standard deviation .
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean and standard deviation
Suppose the true proportion of high school juniors who skateboard is 0.18.
This means that
Samples of 250 high school juniors are taken
This means that
By how much would their sample proportions typically vary from the true proportion?