Answer:
<em>(</em><em>2</em><em>2</em><em>/</em><em>7</em><em>)</em><em>²</em>
<em>5</em><em>7</em><em>6</em><em>/</em><em>4</em><em>9</em>
<em>is</em><em> </em><em>your</em><em> </em><em>answer</em><em> </em><em>hope</em><em> </em><em>it</em><em>'s</em><em> help</em><em> u</em>
Answer: 1
−
1
(
s
e
c
2
−
1
t
a
n
2
)
Step-by-step explanation:
Answer:
<h2>
The right option is twelve-fifths</h2>
Step-by-step explanation:
Given a right angle triangle ABC as shown in the diagram. If ∠BCA = 90°, the hypotenuse AB = 26, AC = 10 and BC = 24.
Using the SOH, CAH, TOA trigonometry identity, SInce we are to find tanA, we will use TOA. According to TOA;
Tan (A) = opp/adj
Taken BC as opposite side since it is facing angle A directly and AC as the adjacent;
tan(A) = BC/AC
tan(A) = 24/10
tan(A) = 12/5
The right option is therefore twelve-fifths
T = 5, so after 5 years
p(t) = t^3 - 14t^2 + 20t + 120
Take derivative to find minimum:
p’(t) = 3t^2 - 28t + 10
Factor to solve for t:
p’(t) = (3t - 2)(t - 5)
0 = (3t - 2)(t - 5)
0 = 3t - 2
2 = 3t
2/3 = t
Plug 2/3 into original equation, this is a maximum. We want the minimum:
0 = t - 5
5 = t
Plug back into original:
5^3 - 14(5)^2 + 20(5) + 120
125 - 14(25) + 100 + 120
125 - 350 + 220
- 225 + 220
p(5) = -5