- The density of the mineral fragment is
(20.47 g/cm3).
- Density can be regarded as<em> ratio of mass to the volume </em>of the object.
Density = (mass/ volume)
Given:
volume of mineral fragments= 2.57 cm3
mass = 52.6 g
density of the mineral fragment = (52.6/2.57)
= 20.47 g/cm3
- Therefore, density of the mineral fragment is (20.47 g/cm3)
Learn more at: brainly.com/question/13594966
Option No. 1 at the cathode in both an electrolytic cell and a voltaic cell
Negative ion arrives at the anode, attracted by electrostatic forces, where they lose electrons. Loss of electrons is defined as oxidation.
The reverse process occur at the negative electrode, where positive ions pick up electrons. They are reduced.
Answer:
Diluted concentration is 0.5M
Explanation:
Let's solve this with rules of three, although there is a formula to see it easier
In 1000 mL (1L), we have 2 moles of NaOH
In 250 mL we must have (250 . 2) / 1000 = 0.5 moles of NaOH
These moles will be also in 1 L of the final volume of the diluted solution
More easy:
1 L of solution has 0.5 moles of NaOH
Then, molarity is 0.5 M
The formula is: Concentrated M . Conc. volume = Diluted M . Diluted volume
2 M . 0.250L = 1L . Diluted M
0.5M = Diluted M
Answer:
The final volume of NaOH solution is 30ml
Explanation:
We all know that
V1S1 = V2S2
or V1= V2S2÷S1
or V1= V2×S2×1/S1
or V1=100×0.15×1/0.50
V1= 30
∴30 ml NaOH solution is required to prepare 0.15 M from 100ml 0.50 M NaOH solution.