The given question is incomplete. The complete question is :
It takes 151 kJ/mol to break an iodine-iodine single bond. Calculate the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon. Be sure your answer has the correct number of significant digits.
Answer: 793 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:

where,
E = energy of the light = 151 kJ= 151000 J (1kJ=1000J)
N= moles = 1 = 
h = Planck's constant = 
c = speed of light = 
= wavelength of light = ?
Putting in the values:


Thus the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon is 793 nm
Answer:
grams of solution = 551.98 g
Explanation:
Given data:
Percentage of solution = 32.9
Mass of solute = 181.6 g
Grams of solvent = ?
Solution:
Formula:
% = [grams of solute / grams of solution] × 100
Now we will put the values in formula.
32.9 = [ 181.6 g / grams of solution] × 100
grams of solution = 181.6 g × 100 / 32.9
grams of solution = 18160 g /32.9
grams of solution = 551.98 g