33square2 i think that is what it is
Let's call the two numbers
and
.
Given these variables, we can say:
, based on the first sentence in the problem.
Also, remember that the reciprocal of a number is simply 1 divided by the number. Thus, we can say that:

To solve, we can simply substitute
in for
in the second equation and solve.


- Get terms on the left side to a common denominator for easier addition


- Cross multiplication (
)


- Subtract
from both sides of the equation

- Factor left side of the equation

Now, notice that we have found two solutions, but the problem is only asking for one. This <em>likely </em>means that one of our solutions is extraneous. Let's take a look. Remember that the smaller positive number is equal to 14 less than the larger number. However,
,
Since
is not positive in this case,
is not a solution.
Thus,
is our only solution. In this case,
,
which means that the smaller number is 14 and the larger number is 28.
A quadrilateral, has 4 sides and its internal angles sum, add up to 360, now... you have 3 angles give.. .but we don't have C
so.. C is the difference of all the three angles from 360 or

whatever that is, now, you'll get some value in x-terms
so.... now once we know what C is
you can if you want, do a search in google for "inscribed quadrilateral conjecture", I can do a quick proof if you need one
but in short, for a quadrilateral inscribed in a circle, each pair of opposites angles are "supplementary angles", namely they add up to 180°
so.. what the dickens does all that mean? well D+B=180 and A+C = 180
now. we know what A is, 2x+1
and by now, you'd know what C is from 360-x-2x-1-148
so... add them together then and

solve for "x"
Answer:
f(x) = |x|, f(x) = [x] + 6
Step-by-step explanation:
Almost all of these are absolute values equations, which means the y doesn't change if x is positive or negative. The first one is the parent form, which is the simplest equation of the absolute equation, so it's symmetric with respect to the y-axis. The second equation is translated 3 units to the left, and the third is translated 31 to the left. The forth is translated 6 up, so it's still symmetric with respect to the y-axis. The fifth is translated 61 units left, and the last one is simply a line, which isn't symmetric.