The answer is c. 12ac^14/b^3
If events A and B are independent,
For mutually exclusive then p(A or B) = p(A) + p(B).
For not mutually exclusive then p(A or B) = p(A) + p(B) - p(A and B)
And: p(A and B) = p(A) * p(B)
Given: <span>p(A) = 0.22 and p(B) = 0.24.
</span>
<span>∴ p(A and B) = p(A) * p(B) = 0.22*0.24 = 0.0528
</span>
If A and B are mutually exclusive
∴ p(A or B) = p(A) + p(B) = 0.22 + 0.24 = 0.46
If A and B are not mutually exclusive
∴ p(A or B) = p(A) + p(B) - p(A and B) = 0.22 + 0.24 - <span>0.0528 = 0.4072
</span>
=============================================
note: Two events are mutually exclusive if it is not possible for both of them to occur, which mean the occurrence of one event "excludes" the possibility of the other event.
Answer:
16
Step-by-step explanation:
mode = the most
mean = ave
median = the no. in between
so arrange those five costs the one in the middle is <em>1</em><em>6</em>