<span>I think you might be asking about the 3 different osmotic conditions a cell might find itself in. Isotonic is the normal cell environment where water moves in and out of the cell freely and equally in both directions. It is in osmotic equilibrium so to speak. The concentration of water and solutes is equal on both sides of the cello membrane. In a hypotonic solution the cell will gain water and swell up -...</span>
Answer:
Explanation:
Osmosis is the process in which the molecules of a solvent move from a region of low concentration to a region of higher concentration through a semi-permeable barrier.
While eating the chips, <u>the salt content from the chips makes the surrounding solution of the cells to have an increase in salt concentration causing an hypertonic solution</u>. An hypertonic solution is a solution that has more solute (salt) than the (solute in a) cell. <u>This increase in salt concentration around the cells causes the cells to release water to neutralize the high salt concentration in the solution around the cell (in order to maintain homeostasis)</u> which causes dehydration in the individual and hence making the individual to be thirsty. <u>The body attempts to maintain balance by passing this excess salt out of the body in the form of urine hence the reason for the dark colour in the urine </u>(because if the body doesn't rid itself of the high salt concentration, the cells could shrink and die as a result).
Answer:
The correct answer is: The ventromedial hypothalamus plays a role in satiety.
Explanation:
The hypothalamus is a part of the brain that controls many important bodily functions and connects both the nervous system with the endocrine system. The hypothalamus consists of several nuclei that have diverse functions and are located in 3 different regions.
The nucleus that plays a role in satiety is the ventromedial nucleus, terminating hunger and giving a sensation of fullness. It also plays a significant role in thermoregulation, among other things.
Neuropeptide Y, on the other hand, is a peptide that is released to make us feel hungry and encourage us to intake food (primarily carbohydrates).
Cholecystokinin is a hormone released by the small intestines after we had a meal, and its function is to improve digestion and make us feel full.
Fat cells DO release leptin, but the function of this hormone is to produce satiety, by stimulating anorexigenic (meaning they take hunger away) hormones and inhibiting orexigenic ones, like Neuropeptide Y.