Answer:
Step-by-step explanation:
2x = 128
x = 128/2
x = 64
Total tickets sold = 800
Total revenue = $3775
Ticket costs:
$3 per child,
$8 per adult,
$5 per senior citizen.
Of those who bought tickets, let
x = number of children
y = number of adults
z = senior citizens
Therefore
x + y + z = 800 (1)
3x + 8y + 5z = 3775 (2)
Twice as many children's tickets were sold as adults. Therefore
x = 2y (3)
Substitute (3) into (1) and (2).
2y + y + z = 800, or
3y + z = 800, or
z = 800 - 3y (4)
3(2y) + 8y + 5z = 3775, or
14y + 5z = 3775 (5)
Substtute (4) nto (5).
14y + 5(800 - 3y) = 3775
-y = -225
y = 225
From (4), obtain
z = 800 - 3y = 125
From (3), obtain
x = 2y = 450
Answer:
The number of tickets sold was:
450 children,
225 adults,
125 senior citizens.
Answer:
(a-f)/6 = r
Step-by-step explanation:
The total Bonnie must pay is the weekend fee plus the hourly rate times the hours worked
Cost = weekend fee * hourly rate* hours
hours = 6
weekend fee =f
hourly rate = r
Cost = a dollars
Substituting in what we know
a = f+ 6r
We want to solve for r
Subtract f from each side
a-f =f-f +6r
a-f = 6r
Divide each side by 6
(a-f)/6 = 6r/6
(a-f)/6 = r
I hope this helps you
-4x-2y+4x+8y= -12-24
6y= -36
y= -6
-4x-2. (-6)= -12
-4x+12= -12
-4x= -24
x=6
(6, -6)