1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dima020 [189]
2 years ago
15

Can someone help me with this question plz thx :,)

Mathematics
1 answer:
Alenkinab [10]2 years ago
3 0

Answer:

43.35

Step-by-step explanation:

You might be interested in
For each vector field f⃗ (x,y,z), compute the curl of f⃗ and, if possible, find a function f(x,y,z) so that f⃗ =∇f. if no such f
butalik [34]

\vec f(x,y,z)=(2yze^{2xyz}+4z^2\cos(xz^2))\,\vec\imath+2xze^{2xyz}\,\vec\jmath+(2xye^{2xyz}+8xz\cos(xz^2))\,\vec k

Let

\vec f=f_1\,\vec\imath+f_2\,\vec\jmath+f_3\,\vec k

The curl is

\nabla\cdot\vec f=(\partial_x\,\vec\imath+\partial_y\,\vec\jmath+\partial_z\,\vec k)\times(f_1\,\vec\imath+f_2\,\vec\jmath+f_3\,\vec k)

where \partial_\xi denotes the partial derivative operator with respect to \xi. Recall that

\vec\imath\times\vec\jmath=\vec k

\vec\jmath\times\vec k=\vec i

\vec k\times\vec\imath=\vec\jmath

and that for any two vectors \vec a and \vec b, \vec a\times\vec b=-\vec b\times\vec a, and \vec a\times\vec a=\vec0.

The cross product reduces to

\nabla\times\vec f=(\partial_yf_3-\partial_zf_2)\,\vec\imath+(\partial_xf_3-\partial_zf_1)\,\vec\jmath+(\partial_xf_2-\partial_yf_1)\,\vec k

When you compute the partial derivatives, you'll find that all the components reduce to 0 and

\nabla\times\vec f=\vec0

which means \vec f is indeed conservative and we can find f.

Integrate both sides of

\dfrac{\partial f}{\partial y}=2xze^{2xyz}

with respect to y and

\implies f(x,y,z)=e^{2xyz}+g(x,z)

Differentiate both sides with respect to x and

\dfrac{\partial f}{\partial x}=\dfrac{\partial(e^{2xyz})}{\partial x}+\dfrac{\partial g}{\partial x}

2yze^{2xyz}+4z^2\cos(xz^2)=2yze^{2xyz}+\dfrac{\partial g}{\partial x}

4z^2\cos(xz^2)=\dfrac{\partial g}{\partial x}

\implies g(x,z)=4\sin(xz^2)+h(z)

Now

f(x,y,z)=e^{2xyz}+4\sin(xz^2)+h(z)

and differentiating with respect to z gives

\dfrac{\partial f}{\partial z}=\dfrac{\partial(e^{2xyz}+4\sin(xz^2))}{\partial z}+\dfrac{\mathrm dh}{\mathrm dz}

2xye^{2xyz}+8xz\cos(xz^2)=2xye^{2xyz}+8xz\cos(xz^2)+\dfrac{\mathrm dh}{\mathrm dz}

\dfrac{\mathrm dh}{\mathrm dz}=0

\implies h(z)=C

for some constant C. So

f(x,y,z)=e^{2xyz}+4\sin(xz^2)+C

3 0
3 years ago
Help please it’s for a test I’m so clueless!!!!!!
kumpel [21]

Answer:

h=12  A=144 sq. cm.

Step-by-step explanation:

pythagoream therom:

9^2+h^2=15^2

81+h^2=225

h^2=225-81

h^2=144

Sq. rt h^2=sq. rt 144

h=12cm

1/2(b1+b2)h

1/2(5+19)12

1/2(24)12

1/2(288)

a=144

6 0
2 years ago
[(2x)^x (2x)^2x]^1/x<br>how do you simplify this?
Monica [59]
Note that [ (2x)^x ]^(1/x) = 2x, and that [ (2x)^(2x) ]^(1/x) = (2x)^2 = 4x^2

Multiplying these 2 results together, we get (2x)(4x^2) = 8x^3 (answer)
5 0
3 years ago
What is the quotient of 13632 divide by 48
Sergio039 [100]
<span>284
Hope this helps. c:</span>
4 0
3 years ago
Read 2 more answers
Plzzzz I need the answer
ivann1987 [24]
There’s nothing on the image soo
7 0
2 years ago
Other questions:
  • You need to download 3 games for your math class. Each game is the same price. Since this is your first time downloading a game
    9·1 answer
  • PLEASE help me??
    5·1 answer
  • Find a(33) if the first term in the sequence is 3 and the common difference is -1.
    9·1 answer
  • Complete the square for the expression
    11·1 answer
  • Bro have y'all seen blueface ig story ?
    9·2 answers
  • Help pleassssee
    15·1 answer
  • Two processes in a manufacturing line are performed manually: operation A and operation B. A random sample of 50 different assem
    6·1 answer
  • Please help me I need all the help I could get ASAP!
    12·2 answers
  • Can someone explain this step by step for me? its from a review so ignore my wrong answer. Thank you!
    10·1 answer
  • Is <img src="https://tex.z-dn.net/?f=%5Csqrt%7B72%7D" id="TexFormula1" title="\sqrt{72}" alt="\sqrt{72}" align="absmiddle" class
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!