The initial concentration of solution is 0.0693 M. The volume of solution taken is 10 mL and it is diluted to a final volume of 500 mL.
According to dilution law, the product of initial concentration and volume is equal to the product of final concentration and volume as follows:

Here,
is initial concentration,
is final concentration,
is initial volume and
is final volume.
Rearranging to calculate final concentration,

Putting the values,

Therefore, concentration of the resulting solution is 0.001386 M.
Answer:
4 4 8 4 is the balanced equation
Answer:
35.47+10.1 is 45.57, I hope that helped nc I'm new to this app and yea.
Answer:
The correct answer is option 1 "F(2-) "less than" C2(2+) "less than" O(2-) "less than" N(2-)".
Explanation:
Bond order is a term used in chemistry to identify the number of electrons involved in making the bonding between two or more atoms in a molecule. Bond order is equal to half the difference between the number of bonds in the atoms minus the number of antibonds. Therefore, the correct order of bond order from smallest to largest is as follows:
1. F(2-): equals to 0.5 (it has 8 bonds and 7 antibonds)
2. C2(2+): equals to 1 (it has 4 bonds and 2 antibonds)
3. O(2-): equals to 2 (it has 8 bonds and 4 antibonds)
4. N(2-): equals to 2.5 (it has 8 bonds and 3 antibonds)
Solve these problems like weighted averages:
The first one:
Multiply the masses (isotope numbers) by the decimal form of the percentage. Add them
0.076 (6) + 0.924 (7) = 6.924
The second one:
0.2 (10) + 0.8 (11) = 10.8
If you think about it, these answers make sense. 6.924 is much closer to 7 than to 6 (since there's a lot more lithium-7 than there is lithium-6). 10.8 is closer to 11 than to 10.