The vertex of the function f(x) exists (1, 5), the vertex of the function g(x) exists (-2, -3), and the vertex of the function f(x) exists maximum and the vertex of the function g(x) exists minimum.
<h3>How to determine the vertex for each function is a minimum or a maximum? </h3>
Given:
and
The generalized equation of a parabola in the vertex form exists
Vertex of the function f(x) exists (1, 5).
Vertex of the function g(x) exists (-2, -3).
Now, if (a > 0) then the vertex of the function exists minimum, and if (a < 0) then the vertex of the function exists maximum.
The vertex of the function f(x) exists at a maximum and the vertex of the function g(x) exists at a minimum.
To learn more about the vertex of the function refer to:
brainly.com/question/11325676
#SPJ4
Answer: My internet connection is not good enough.
Step-by-step explanation: This one may be pretty commonly used but also a common problem people always have and it's pretty unavoidable. Tell her that the call\meeting gets super laggy and then ends up freezing and that doing it over voice is a better option for you so you can get the best learning experience or something like that. Basically pretend you care until he\she believes it.
Good luck <3 Let me know if you need another!
Total capacity = sum of the individual production capacities.
Here,
Total capacity = sum of f(m) = (m + 4)^2 + 100 and g(m) = (m + 12)^2 − 50.
Then f(m) + g(m) = (m + 4)^2 + 100 + (m + 12)^2 − 50.
We must expand the binomial squares in order to combine like terms:
m^2 + 8 m + 16 + 100
+m^2 + 24m + 144 - 50
---------------------------------
Then f(m) + g(m) = 2m^2 + 32m + 160 + 50
f(m) + g(m) = 2m^2 + 32m + 210, where m is the number of
minutes during which the two machines operate.
Answer: plug in y=mx + b
Step-by-step explanation: