Answer:
G). 1.2x + 7.92 -3.3x = 41
-2.1x=33.08
x = 33.08/-2.1
x = - 15.752
H). 3x/2 + 9/5 = 12
Multiply through by 10
15x + 18 =120
15x =120-18
15x = 102
x =102/15
x=34/5
I). 5 = 9/4 - r/3
Multiply through by 12
60= 27 - 4r
60 - 27 = -4r
33 = - 4r
r = -33/4
J). 2(x - 2) = 12
2x - 4 = 12
2x = 16
x = 16/2
x = 8
Let's solve your equation step-by-step.<span><span><span>−w</span>+<span>4<span>(<span>w+3</span>)</span></span></span>=<span>−12</span></span>Step 1: Simplify both sides of the equation.<span><span><span>−w</span>+<span>4<span>(<span>w+3</span>)</span></span></span>=<span>−12</span></span><span>Simplify: (Show steps)</span><span><span><span>3w</span>+12</span>=<span>−12</span></span>Step 2: Subtract 12 from both sides.<span><span><span><span>3w</span>+12</span>−12</span>=<span><span>−12</span>−12</span></span><span><span>3w</span>=<span>−24</span></span>Step 3: Divide both sides by 3.<span><span><span>3w</span>3</span>=<span><span>−24</span>3</span></span><span>w=<span>−8</span></span>Answer:<span>w=<span>−<span>8</span></span></span>
<h2>
Answer:</h2>
cos 28°cos 62°– sin 28°sin 62° = 0
<h2>
Step-by-step explanation:</h2>
From one of the trigonometric identities stated as follows;
<em>cos(A+B) = cosAcosB - sinAsinB -----------------(i)</em>
We can apply such identity to solve the given expression.
<em>Given:</em>
cos 28°cos 62°– sin 28°sin 62°
<em>Comparing the given expression with the right hand side of equation (i), we see that;</em>
A = 28°
B = 62°
<em>∴ Substitute these values into equation (i) to have;</em>
<em>⇒ cos(28°+62°) = cos28°cos62° - sin28°sin62°</em>
<em />
<em>Solve the left hand side.</em>
<em>⇒ cos(90°) = cos28°cos62° - sin28°sin62°</em>
⇒ 0 = <em>cos28°cos62° - sin28°sin62° (since cos 90° = 0)</em>
<em />
<em>Therefore, </em>
<em>cos28°cos62° - sin28°sin62° = 0</em>
<em />
<em />