Answer:
Problem 23) 
Problem 24) 
Step-by-step explanation:
step 1
Find the slope of the given line
The formula to calculate the slope between two points is equal to

we have

Substitute the values


step 2
Problem 23
we know that
If two lines are perpendicular then the product of its slopes is equal to minus 1
so

Find the slope of the line
we have

substitute in the equation and solve for m2


with the slope m2 and the point
find the equation of the line
Remember that
The equation of the line in slope intercept form is equal to

we have

-----> the given point is the y-intercept
substitute

step 3
Problem 24
we know that
If two lines are parallel, then its slopes are the same
so
with the slope m1 and the point
find the equation of the line
The equation of the line in slope intercept form is equal to

we have

-----> the given point is the y-intercept
substitute

Answer:
a) 0.2778
b) 0.3611
c) 0.1389
d) 0.0833
Step-by-step explanation:
We have a total of 5 + 3 + 1 = 9 balls
a) First ball being yellow: we have 5 yellow balls, so P1 = 5/9
Second ball being yellow after one yellow was drawn: we have 4 yellows and 8 balls, so P2 = 4/8 = 1/2
Both yellows: P = P1 * P2 = 5/18 = 0.2778
b) Both blues:
P1 = 3/9 = 1/3
P2 = 2/8 = 1/4
P = P1 * P2 = 1/12 = 0.0833
Both yellows or both blues: 5/18 + 1/12 = 0.2778 + 0.0833 = 0.3611
c) First yellow: P1 = 5/9
Second red: P2 = 1/8
Pa = P1 * P2 = 5/72
or
First red: P3 = 1/9
Second yellow: P4 = 5/8
Pb = P3 * P4 = 5/72
P = Pa + Pb = 10/72 = 5/36 = 0.1389
d) First blue: P1 = 3/9 = 1/3
Second red: P2 = 1/8
Pa = P1 * P2 = 1/24
or
First red: P3 = 1/9
Second blue: P4 = 3/8
Pb = P3 * P4 = 1/24
P = Pa + Pb = 2/24 = 1/12 = 0.0833
Explanation: The sum<span> of the measure of the </span>internal<span> angles of any triangle is 180o . In a right angled triangle, one angle will be 90o . Since we know the measure of one of the other acute (less than 90o ) angles, we subtract the </span>sum<span> of the two known angles from 180 to calculate the measure of the other acute angle.</span>
Answer:
The system x = 4 and y = -x - 1 has one solution
Step-by-step explanation:
x = 4 and y = -x - 1 intersects only once on the graph