3.75 (as a decimal) or 3 3/4 (fraction)
Answer:
AB = 185.77 feet
Step-by-step explanation:
From the figure attached, in ΔABC,
m∠B = 103.2°, m∠C = 14.4° and side BC = 661 feet
We have to find the measure of side AB.
Since ∠A + ∠B + ∠C = 180°
∠A + 103.2 + 14.4 = 180
∠A + 117.6 = 180
∠A = 180 - 117.6
= 62.4°
By applying sine rule in the given triangle ABC



AB = 
= 185.77 feet
Therefore, AB = 185.77 feet will be the answer.
Answer:
1) 55 2)60-80 3)95 4)92.5(mean), 92.5 (median), 95 (mode) 5) the outlier greatly offsets the data as it is no where near the other data points.
Step-by-step explanation:
Answer:
9=x
Step-by-step explanation:
By definition of covariance,
![\mathrm{Cov}(X,Y)=\mathbb E[(X-\mathbb E[X])(Y-\mathbb E[Y])]](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28X%2CY%29%3D%5Cmathbb%20E%5B%28X-%5Cmathbb%20E%5BX%5D%29%28Y-%5Cmathbb%20E%5BY%5D%29%5D)
![\mathrm{Cov}(X,Y)=\mathbb E[XY-\mathbb E[X]Y-X\mathbb E[Y]+\mathbb E[X]\mathbb E[Y]]=\mathbb E[XY]-\mathbb E[X]\mathbb E[Y]](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28X%2CY%29%3D%5Cmathbb%20E%5BXY-%5Cmathbb%20E%5BX%5DY-X%5Cmathbb%20E%5BY%5D%2B%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D%5D%3D%5Cmathbb%20E%5BXY%5D-%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D)
We have
![\mathbb E[(aX-b)(cY-d)]=\mathbb E[acXY-adX-bcY+bd]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5B%28aX-b%29%28cY-d%29%5D%3D%5Cmathbb%20E%5BacXY-adX-bcY%2Bbd%5D)
![=ac\mathbb E[XY]-ad\mathbb E[X]-bc\mathbb E[Y]+bd](https://tex.z-dn.net/?f=%3Dac%5Cmathbb%20E%5BXY%5D-ad%5Cmathbb%20E%5BX%5D-bc%5Cmathbb%20E%5BY%5D%2Bbd)
![\mathbb E[aX-b]=a\mathbb E[X]-b](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BaX-b%5D%3Da%5Cmathbb%20E%5BX%5D-b)
![\mathbb E[cY-d]=c\mathbb E[Y]-d](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BcY-d%5D%3Dc%5Cmathbb%20E%5BY%5D-d)
![\mathbb E[aX-b]\mathbb E[cY-d]=ac\mathbb E[X]\mathbb E[Y]-ad\mathbb E[X]-bc\mathbb E[Y]+bd](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BaX-b%5D%5Cmathbb%20E%5BcY-d%5D%3Dac%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D-ad%5Cmathbb%20E%5BX%5D-bc%5Cmathbb%20E%5BY%5D%2Bbd)
Putting everything together, we find the covariance reduces to
![\mathrm{Cov}(aX-b,cY-d)=ac(\mathbb E[XY]-\mathbb E[X]\mathbb E[Y])=ac\mathrm{Cov}(X,Y)](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28aX-b%2CcY-d%29%3Dac%28%5Cmathbb%20E%5BXY%5D-%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D%29%3Dac%5Cmathrm%7BCov%7D%28X%2CY%29)
as desired.