1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
3 years ago
9

The government estimates 840,000 for equipment, 15,000 for software, and 40,000 per month for wages when the project will take 1

6 months.
Mathematics
1 answer:
adoni [48]3 years ago
7 0

Answer:

the total cost is $1,495,000

Step-by-step explanation:

The computation of the total cost is shown below:

Let us assume the months be m

Now the equation would be

= Equipment + software + wages

= $840,000 + $15,000 + 40,000m

= $840,000 + $15,000 + $40,000 (16)

= $840,000 + $15,000 + $640,000

= $1,495,000

Hence, the total cost is $1,495,000

You might be interested in
Find y when x is -3<br> y=6x+8
lys-0071 [83]

Answer:

-10

Step-by-step explanation:

y=6x+8

y=6(-3)+8

y=-18+8

y=-10

3 0
3 years ago
Need help on this question
aleksandrvk [35]

Answer:

f(-1)=6

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Find the value of y . Please help trying to finish ASAP :)) will give brainliest
slavikrds [6]
Since A (area of circle = C) is given = 148
Where we assume:
Y represents radius of the circle (r)
X represents diameter of the circle (D)
Pi (π) = 3.14
A = 2 * π * y
148 = 2 * 3.14 * y
148 = 6.28 * y
y = 148/6.28
So, y = 23.56

D = 2 * y
D = 2 * 23.56
So, D = 47.12

Assume A is unknown (not given as 148)
A = π * y^2
A = 3.14 * (23.56)^2
A = 3.14 * 47.12
So, A = 147.95 (approx. A = 148)
3 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Find the circumference of a circle that has a radius of 36 inches
SVEN [57.7K]
I think that the answer is 226.194 inches
7 0
2 years ago
Other questions:
  • Write 2 Equivalent Ratios to 7/12
    8·1 answer
  • In rhombus ABCD, What is m ? AEB?
    14·1 answer
  • What is the slope of the equation y=1/3x +5
    13·2 answers
  • What is the probability that Saturday is the day after Wednesday?
    9·2 answers
  • Graph the equation y=2x. Fill in the missing values in<br> the table.
    6·2 answers
  • Which fraction is eqevilent to -3/2
    14·1 answer
  • Which of these is equal to 4 (−)4 <br> A.()4 B.(−)4 .−()4 D. (−)4
    15·1 answer
  • What is excess reagent​
    11·2 answers
  • Jen butler has been pricing speed-pass train fares for a round trip to New York three adults and four children must pay $118 two
    7·1 answer
  • Jonathan works at an advertising agency. When he was hired, he was given four days of paid vacation time. For each year that he
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!