1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leto [7]
3 years ago
7

In a set of five consecutive integers, the smallest integer is more than 2/3 the largest. What is the smallest possible value of

the sum of the five integers?
Mathematics
2 answers:
astraxan [27]3 years ago
4 0
The answer is: "55".
________________
"55" is the smallest possible value of the sum of the five integers.
________________________________________
We are given five (5) consecutive integers.
___________________________________
Let us represent the first integer as: "x"; 
___________________________________
The second integer as: "x + 1" ; 
___________________________________
The third integer as: "x + 2" ; 
___________________________________
The fourth integer as: "x + 3" ; 
___________________________________
The fifth integer as: "x + 4" ; 
___________________________________
We are given: The smallest integer is MORE THAN (⅔ of the largest integer.
____________________________________
The smallest integer, "x" is greater than: "(⅔) (x + 4)"
________________________________________________
Note the distributive property of multiplication:
__________________________________
→  a*(b + c) = ab + ac ;
__________________________________
→ As such; (⅔) (x + 4) = [(⅔)*(x)] + [⅔)*(4); 
________________________________________
→ (⅔) (x + 4) = [(⅔)*(x)] + [⅔)*(\frac{4}{1})
______________________________________________
{Note: [⅔)*(\frac{4}{1})=\frac{2*4}{3*1}=\frac{8}{3}}; 
_______________________________________________
→ Rewrite the equation: → ⅔ of the largest integer =
______________________
→ (⅔) *(x + 4) = (⅔)x + \frac{8}{3} ;
_______________________________
The smallest, "x", is GREATER than: (⅔)x + \frac{8}{3} ; 
________________________________
→ Write as:  x > (⅔)x + \frac{8}{3}
______________________________________
→ Multiply the ENTIRE "inequality" (BOTH SIDES) by "3", to get rid of the "fractions":
_______________________________
3*{  x > (⅔)x + \frac{8}{3} } ; to get: 
________________________________________
→ 3x > 2x + 8 ; → Now, subtract "2x" from EACH SIDE of the inequality;
_________________________
 → 3x − 2x > 2x + 8 − 2x ;  
______________________
→ to get:  →  x > 8
____________________
Now, we want to to know the "smallest possible value of the sum five          integers".
___________________________________
→That is, the smallest possible value of the sum of :
___________________________________________
→x + (x + 1) + (x + 2) + (x + 3) + (x + 4) = 5x + 10.
__________________
So, we want to know the smallest value of "(5x + 10)" ; x > 8, 
_______________________________________________
→ Let us solve for "5x + 10" ; when x = 10; by substituting "8" for "x"
________________
→ 5x + 10 = (5*8) + 10 = 40 + 10 = 50
___________________________________
So, if "x > 8"; then "x" must be greater than "8"; 
_____________________________
When "x = 8", the sum of the 5 (five) integers in our problem = 50.
___________________________
Since "x" in the first of the consecutive integers in the problem; we know that "x > 8"; then the smallest possible value for "x" would be "9"; since "x" has to be an integer.
______________________________
So, we know that:
The smallest possible value of sum of the value integers =
 5x + 10; when x = 9; 
_________________
→ So, we plug "9" for the value of "x" and solve:
______________________________
→ 5(9) + 10 = 45 + 10 = 55 ; → which is our answer.
_____________________________________
Let us check our answer:
_______________________
→ x + (x + 1) + (x + 2) + (x + 3) + (x + 4) = ? 55?
                                                           (when "x = 9" ?)?? ;
___________________________________________________
→  9 + (9 + 1) + (9 + 2) + (9 + 3) + (9 + 4) = ? 55? ;
______________________________________
→  9  + 10 +  11 + 12 + 13 = ? 55 ?? ;  Yes!.
__________________________________________
Also, is the answer: 55 , Reasonable? Yes, since it is an integer, and 5 consecutive integers added together would "add up" to an integer value.
__________________________________________
Hope this answer and lengthy explanation is helpful.
Best of luck!
_______________________
Natali [406]3 years ago
3 0

Answer:

55

Step-by-step explanation:

You might be interested in
If 1,000 students take a test that has a mean of 40 minutes, a standard deviation of 8 minutes, and is normally distributed, how
Nina [5.8K]
500 because in a normal distribution 50% of the total falls below the mean 
7 0
3 years ago
Read 2 more answers
Please help <br> WILL MARK BRAINLIST
topjm [15]

Answer:

The answer is A, 13, -13.

Step-by-step explanation:

If this helped I would appreciate it if you marked me brainliest. Thank you and have a nice day!

7 0
3 years ago
Read 2 more answers
Find the area of the composite shape. Pls help due tomorrow
Andrej [43]
The area of the composite shape is 203ft

4 0
3 years ago
Noriko multiplies 13 × 45.<br> Which of the following is NOT a partial product
LiRa [457]

Answer:

585

Step-by-step explanation:

7 0
3 years ago
Find the volume of the prism
hichkok12 [17]

Answer:

do you have an image for that?

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Help I need answers
    5·2 answers
  • if it is 5 degrees outside and the temperature will drop 17 degrees in the next 6 hours how could will it get
    9·1 answer
  • Please help with these 2!! Thank you
    5·1 answer
  • What is 20/3 equal to?
    14·1 answer
  • I need some help!! thank you if you know how to do it
    6·1 answer
  • Tom makes 32 dollars a week. He spends 5/8 for lunch and 1/4 for music. How much money did Tom saved
    9·1 answer
  • Help please ! need asap
    10·1 answer
  • The price of a pair of shoes increases from $58 to $61 What is the percent increase to the nearest percent?
    9·2 answers
  • Rename 3/4 and 9/10 using the least common denominator
    13·1 answer
  • Simply (10x^4)(6x)=(10•6)(x^4•x
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!