Answer:
A. Tsunamis:
Tsunamis usually cause the greatest amount of destruction in comparison to other waves. There are massive waves that can cause the destruction of most ecosystems.
Explanation:
- Tsunamis cause large displacement of the water bodies and are generally known as the killer waves.
- The tidal waves are a regular recurrent shallow body of water and affect the gravitational attraction between the sun and the Sun, Moon and the earth and maybe often referred to as tsunami but do not generate to the small tidal waves
- The wind-driven waves or the surface waves are those created by the formation of the surface water and them tens to blow away the occurs for the Oceana and are found across the open seas and globally across the coast. As compared to the tsunami that is tectonically produced these are due to the disturbance in the body of the water.
Answer:
Correct option are Basalt, gabbro and peridotite.
Explanation:
Igneous rocks like basalt, gabbro, dunite, diabase, and peridotite contains the olivine mineral. These are the dark coloured rocks and found within the surface of earth mostly in the areas around the tectonic plates. Olivine is known for its crystallization at high temperatures. It crystallize itself from the heat of the earth. Common olivine minerals are Forsterite, Fayalite, Monticellite and Tephroite.
The answer is C. Hope this helps
True. Hungary IS in fact south of Poland
Answer:
the 9 percent claim is demonstrably false on a number of levels. First, the entire brain is active all the time. The brain is an organ. Its living neurons, and the cells that support them, are always doing something. (Where’s the “you only use 9 percent of your spleen” myth?) Joe LeDoux, a professor of neuroscience and psychology at NYU, thinks that people today may be thrown off by the “blobs”—the dispersed markers of high brain activity—seen in functional magnetic resonance imaging (fMRI) of the human brain. These blobs are often what people are talking about when they refer to the brain “lighting up.”
Say you’re watching a movie in an fMRI scanner. Certain areas of your brain—the auditory and visual cortices, for instance—will be significantly more active than others; and that activity will show up as colored splotches when the fMRI images are later analyzed. These blobs of significant activity usually cover small portions of the brain image, often less than 10 percent, which could make it seem, to the casual observer, that the rest of the brain is idling. But, as LeDoux put it to me in an email, “the brain could be one hundred percent active during a task with only a small percentage of brain activity unique to the task.” This kind of imaging highlights big differences in regional brain activity, not everything the brain is doing.
In fact, the entire premise of only “using” a certain proportion of your brain is misguided. When your brain works on a problem—turning light that hits your retina into an image, or preparing to reach for a pint of beer, or solving an algebra problem—its effectiveness is as much a question of “where” and “when” as it is of “how much.” Certain regions of the brain are more specialized than others to deal with certain tasks, and most behavior depends on tight temporal coordination between those regions. Your visual system helps you locate that pint of beer, and your motor system gets your hand around it. The idea that swaths of the brain are stagnant pudding while one section does all the work is silly. The brain is a complex, constantly multi-tasking network of tissue.
Explanation: