3/4 because if you make it smaller you would get that
The absolute value is how far away a number is from the number line, so it is always positive. If Carlos finds the opposite of the absolute value, that means he found the negative version. So Jason's final value will be greater.
Answer:
![\sqrt{5}\cdot\sqrt[3]{5} =\sqrt[6]{5^3} \cdot\sqrt[6]{5^2} =\sqrt[6]{5^5} =5^{(5/6)}](https://tex.z-dn.net/?f=%5Csqrt%7B5%7D%5Ccdot%5Csqrt%5B3%5D%7B5%7D%20%3D%5Csqrt%5B6%5D%7B5%5E3%7D%20%5Ccdot%5Csqrt%5B6%5D%7B5%5E2%7D%20%3D%5Csqrt%5B6%5D%7B5%5E5%7D%20%3D5%5E%7B%285%2F6%29%7D)
Step-by-step explanation:
The rules of exponents apply, even when they are fractional exponents:
![a^b\cdot a^c=a^{b+c}\\\\\sqrt[b]{x^a}=x^{(a/b)}](https://tex.z-dn.net/?f=a%5Eb%5Ccdot%20a%5Ec%3Da%5E%7Bb%2Bc%7D%5C%5C%5C%5C%5Csqrt%5Bb%5D%7Bx%5Ea%7D%3Dx%5E%7B%28a%2Fb%29%7D)
Answer:
I believe that would be 0.0235. I hope this helps you! :)
The domain of a function is the set of the possible input values of the function. For example: consider the function f(x) = cos x, the domain of the function is the set of possible values of x.
The cosine function takes x values from all real numbers.
Therefore, the domain of the cosine function is a real numbers.