John is 31 and Jenny is 26
Answer:
x²/2166784 +y²/2159989 = 1
Step-by-step explanation:
The relationship between the semi-axes and the eccentricity of an ellipse is ...
e = √(1 -b²/a²)
In order to write the desired equation we need to find 'b' from 'e' and 'a'.
__
<h3>semi-minor axis</h3>
Squaring the equation for eccentricity gives ...
e² = 1 -b²/a²
Solving for b², we have ...
b²/a² = 1 -e²
b² = a²(1 -e²)
<h3>ellipse equation</h3>
Using the given values, we find ...
b² = 1472²(1 -0.056²) = 2166784(0.996864) ≈ 2159989
The desired equation is ...
x²/2166784 +y²/2159989 = 1
The probability of event A and B to both occur is denoted as P(A ∩ B) = P(A) P(B|A). It is the probability that Event A occurs times the probability that Event B occurs, given that Event A has occurred.
So, to find the probability that you will be assigned a poem by Shakespeare and by Tennyson, let Event A = the event that a Shakespeare poem will be assigned to you; and let Event B = the event that the second poem that will be assigned to you will be by Tennyson.
At first, there are a total of 13 poems that would be randomly assigned in your class. There are 4 poems by Shakespeare, thus P(A) is 4/13.
After the first selection, there would be 13 poems left. Therefore, P(B|A) = 2/12
Based on the rule of multiplication,
P(A ∩ B) = P(A) P(B|A)P(A ∩ B) = 4/13 * 2/12
P(A ∩ B) = 8/156
P(A ∩ B) = 2/39
The probability that you will be assigned a poem by Shakespeare, then a poem by Tennyson is 2/39 or 5.13%.
Answer:
probability that Shaun loses both games
Step-by-step explanation:
Games are independent, so we find each separate probability, and multiply them.
In a chess club the probability that Shaun will beat Mike is 3/8.
So
probability that Shaun loses.
The probability that Shaun will beat Tim is 5/7 .
So
probability that Shaun loses.
What is the probability that Shaun loses both games?
This is:

probability that Shaun loses both games