I don't know, Sorry, but I will keep looking at it to see if I can figure it out, Sorry
11) -x + y = -1 ; 2x - y = 0
y = -1 + x ; 2x - (-1+x) = 0 ⇒ 2x + 1 - x = 0 ⇒x = -1
y = -1 + (-1) ⇒ y = -2
12) -2x + y = -20 ; 2x + y = 48
y = -20 + 2x ; 2x + (-20 + 2x) = 48 ⇒ 2x -20 + 2x = 48 ⇒ 4x = 48 + 20
4x = 68 ⇒ x = 68/4 ⇒ x = 17
y = -20 + 2(17) ⇒ y = -20 + 34 ⇒ y = 14
13) 3x -y = -2 ; -2x + y = 3
y = 3 + 2x ; 3x - (3 + 2x) = -2 ⇒ 3x - 3 - 2x = -2 ⇒ x = -2 + 3 ⇒ x = 1
y = 3 + 2(1) ⇒ y = 3 + 2 ⇒ y = 5
14) x - y = 4 ; x - 2y = 10
x = 4 + y ; (4 + y) - 2y = 10 ⇒ 4 + y - 2y = 10 ⇒ 4 - y = 10
⇒ -y = 10 - 4 ⇒ -y = 6 ⇒ y = -6
x = 4 + (-6) ⇒ x = 4 - 6 ⇒ x = -2
15) x + 2y = 5 ; 3x + 2y = 17
x = 5 - 2y ; 3(5-2y) + 2y = 17 ⇒ 15 - 6y + 2y = 17 ⇒ -4y = 17 - 15
⇒ -4y = 2 ⇒ y = -2/4 ⇒ y = -1/2
x = 5 - 2(-1/2) ⇒ x = 5 + 2/2 ⇒ x = 5 + 1 ⇒ x = 6
Answer:
![x(\sqrt[12]{x^5} )](https://tex.z-dn.net/?f=x%28%5Csqrt%5B12%5D%7Bx%5E5%7D%20%29)
Step-by-step explanation:
We need to remember 2 rules when doing these:
1. ![\sqrt[n]{x^a} =x^{\frac{a}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5Ea%7D%20%3Dx%5E%7B%5Cfrac%7Ba%7D%7Bn%7D%7D)
2. 
Using these 2 rules, we can simplify the product (steps shown below):
![\sqrt[3]{x^2} *\sqrt[4]{x^3} \\=x^{\frac{2}{3}}*x^{\frac{3}{4}}\\=x^{\frac{2}{3}+\frac{3}{4}}\\=x^{\frac{17}{12}}\\=x^{\frac{12}{12}+\frac{5}{12}}\\=x(x^{\frac{5}{12}})\\=x(\sqrt[12]{x^5} )](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E2%7D%20%2A%5Csqrt%5B4%5D%7Bx%5E3%7D%20%5C%5C%3Dx%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2Ax%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%5C%5C%3Dx%5E%7B%5Cfrac%7B2%7D%7B3%7D%2B%5Cfrac%7B3%7D%7B4%7D%7D%5C%5C%3Dx%5E%7B%5Cfrac%7B17%7D%7B12%7D%7D%5C%5C%3Dx%5E%7B%5Cfrac%7B12%7D%7B12%7D%2B%5Cfrac%7B5%7D%7B12%7D%7D%5C%5C%3Dx%28x%5E%7B%5Cfrac%7B5%7D%7B12%7D%7D%29%5C%5C%3Dx%28%5Csqrt%5B12%5D%7Bx%5E5%7D%20%29)
Rearranging, we see that it is the third choice.
2. 1 1/2 each
3. 1 1/4 each
4. 1 3/4 each
5. 3/4 each